Plasticity - Weimin Han, B. Daya Reddy

Plasticity

Mathematical Theory and Numerical Analysis
Buch | Hardcover
384 Seiten
1999
Springer-Verlag New York Inc.
978-0-387-98704-0 (ISBN)
139,05 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Focuses on theoretical aspects of the small-strain theory of hardening elastoplasticity. This work is intended to provide a comprehensive treatment of the mathematical theory and numerical analysis. It is useful for specialists who wish to know about the mathematical theory.
Focussing on theoretical aspects of the small-strain theory of hardening elastoplasticity, this monograph provides a comprehensive and unified treatment of the mathematical theory and numerical analysis, exploiting in particular the great advantages gained by placing the theory in a convex analytic context. Divided into three parts, the first part of the text provides a detailed introduction to plasticity, in which the mechanics of elastoplastic behaviour is emphasised, while the second part is taken up with mathematical analysis of the elastoplasticity problem. The third part is devoted to error analysis of various semi-discrete and fully discrete approximations for variational formulations of the elastoplasticity.

I Continuum Mechanics and Elastoplasticity: Theory. Introduction. Continuum Mechanics and Linear Elasticity. Elastoplastic Media. The Plastic Flow Law in a Convex Analytic Setting.- II The Variational Problems of Elastoplasticity: Results from Functional Analysis and Function Spaces. Variational Equations and Inequalities. The Primal Variational Problem of Elastoplasticity. The Dual Variational Problem of Elastoplasticity.- III Numerical Analysis of the Variational Problems 201: Introduction to Finite Element Analysis. Approximation of Variational Problems. Approximations of the Abstract Problem. Numerical Analysis of the Primal Problem. Numerical Analysis of the Dual Problem. References.

Reihe/Serie Interdisciplinary Applied Mathematics ; Vol.9
Zusatzinfo 1, black & white illustrations
Verlagsort New York, NY
Sprache englisch
Maße 156 x 234 mm
Gewicht 730 g
Einbandart gebunden
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Technik Maschinenbau
ISBN-10 0-387-98704-5 / 0387987045
ISBN-13 978-0-387-98704-0 / 9780387987040
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95