Holomorphic Morse Inequalities and Bergman Kernels

Buch | Hardcover
XIII, 422 Seiten
2007 | 2007
Springer Basel (Verlag)
978-3-7643-8096-0 (ISBN)

Lese- und Medienproben

Holomorphic Morse Inequalities and Bergman Kernels - Xiaonan Ma, George Marinescu
139,09 inkl. MwSt
Winner of the Ferran Sunyer i Balaguer Prize 2006

This book gives for the first time a self-contained and unified approach to holomorphic Morse inequalities and the asymptotic expansion of the Bergman kernel on manifolds by using the heat kernel, and presents also various applications.

The main analytic tool is the analytic localization technique in local index theory developed by Bismut-Lebeau. The book includes the most recent results in the field and therefore opens perspectives on several active areas of research in complex, Kähler and symplectic geometry. A large number of applications are included, e.g., an analytic proof of the Kodaira embedding theorem, a solution of the Grauert-Riemenschneider and Shiffman conjectures, a compactification of complete Kähler manifolds of pinched negative curvature, the Berezin-Toeplitz quantization, weak Lefschetz theorems, and the asymptotics of the Ray-Singer analytic torsion.

Demailly's Holomorphic Morse Inequalities.- Characterization of Moishezon Manifolds.- Holomorphic Morse Inequalities on Non-compact Manifolds.- Asymptotic Expansion of the Bergman Kernel.- Kodaira Map.- Bergman Kernel on Non-compact Manifolds.- Toeplitz Operators.- Bergman Kernels on Symplectic Manifolds.

Erscheint lt. Verlag 19.7.2007
Reihe/Serie Progress in Mathematics
Zusatzinfo XIII, 422 p.
Verlagsort Basel
Sprache englisch
Maße 155 x 235 mm
Gewicht 875 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte analytic torsion • Bergman kernel • Complex Analysis • Curvature • Holomorphe Funktion • manifold • Morse Theory • Symplectic Geometry • Ungleichheit
ISBN-10 3-7643-8096-9 / 3764380969
ISBN-13 978-3-7643-8096-0 / 9783764380960
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich