Algebraic Cobordism

Buch | Hardcover
XII, 246 Seiten
2007 | 2007
Springer Berlin (Verlag)
978-3-540-36822-9 (ISBN)
106,99 inkl. MwSt
Following Quillen's approach to complex cobordism, the authors introduce the notion of oriented cohomology theory on the category of smooth varieties over a fixed field. They prove the existence of a universal such theory (in characteristic 0) called Algebraic Cobordism. Surprisingly, this theory satisfies the analogues of Quillen's theorems: the cobordism of the base field is the Lazard ring and the cobordism of a smooth variety is generated over the Lazard ring by the elements of positive degrees. This implies in particular the generalized degree formula conjectured by Rost. The book also contains some examples of computations and applications.

Introduction.- I. Cobordism and oriented cohomology.- 1.1. Oriented cohomology theories. 1.2. Algebraic cobordism. 1.3. Relations with complex cobordism. - II. The definition of algebraic cobordism. 2.1. Oriented Borel-Moore functions. 2.2. Oriented functors of geometric type. 2.3. Some elementary properties. 2.4. The construction of algebraic cobordism. 2.5. Some computations in algebraic cobordism.- III. Fundamental properties of algebraic cobordism. 3.1. Divisor classes. 3.2. Localization. 3.3. Transversality. 3.4. Homotopy invariance. 3.5. The projective bundle formula. 3.6. The extended homotopy property. IV. Algebraic cobordism and the Lazard ring. 4.1. Weak homology and Chern classes. 4.2. Algebraic cobordism and K-theory. 4.3. The cobordism ring of a point. 4.4. Degree formulas. 4.5. Comparison with the Chow groups. V. Oriented Borel-Moore homology. 5.1. Oriented Borel-Moore homology theories. 5.2. Other oriented theories.- VI. Functoriality. 6.1. Refined cobordism. 6.2. Intersection with a pseudo-divisor. 6.3. Intersection with a pseudo-divisor II. 6.4. A moving lemma. 6.5. Pull-back for l.c.i. morphisms. 6.6. Refined pull-back and refined intersections. VII. The universality of algebraic cobordism. 7.1. Statement of results. 7.2. Pull-back in Borel-Moore homology theories. 7.3. Universality 7.4. Some applications.- Appendix A: Resolution of singularities.- References.- Index.- Glossary of Notation.

Erscheint lt. Verlag 9.1.2007
Reihe/Serie Springer Monographs in Mathematics
Zusatzinfo XII, 246 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 505 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Chern class • Chow ring • Cobordism • cohomology • Cohomology theory • Homology • Homotopy • Kobordismus • K-theory • Oriented cohomology theory
ISBN-10 3-540-36822-1 / 3540368221
ISBN-13 978-3-540-36822-9 / 9783540368229
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich