Twistor Theory for Riemannian Symmetric Spaces - Francis E. Burstall, John H. Rawnsley

Twistor Theory for Riemannian Symmetric Spaces

With Applications to Harmonic Maps of Riemann Surfaces
Buch | Softcover
110 Seiten
1990 | 1990
Springer Berlin (Verlag)
978-3-540-52602-5 (ISBN)
26,70 inkl. MwSt
In this monograph on twistor theory and its applications to harmonic map theory, a central theme is the interplay between the complex homogeneous geometry of flag manifolds and the real homogeneous geometry of symmetric spaces. In particular, flag manifolds are shown to arise as twistor spaces of Riemannian symmetric spaces. Applications of this theory include a complete classification of stable harmonic 2-spheres in Riemannian symmetric spaces and a Bäcklund transform for harmonic 2-spheres in Lie groups which, in many cases, provides a factorisation theorem for such spheres as well as gap phenomena. The main methods used are those of homogeneous geometry and Lie theory together with some algebraic geometry of Riemann surfaces. The work addresses differential geometers, especially those with interests in minimal surfaces and homogeneous manifolds.

Homogeneous geometry.- Harmonic maps and twistor spaces.- Symmetric spaces.- Flag manifolds.- The twistor space of a Riemannian symmetric space.- Twistor lifts over Riemannian symmetric spaces.- Stable Harmonic 2-spheres.- Factorisation of harmonic spheres in Lie groups.

Erscheint lt. Verlag 22.5.1990
Reihe/Serie Lecture Notes in Mathematics
Zusatzinfo 110 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 1 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Differentialgeometrie • Differential Geometry • Differenzialgeometrie • harmonic maps • manifold • minimal surface • minimal surfaces • Riemannian symmetric spaces • Riemannsche Flächen • Riemannsche Räume • Twistor theory
ISBN-10 3-540-52602-1 / 3540526021
ISBN-13 978-3-540-52602-5 / 9783540526025
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich