Kernel Based Algorithms for Mining Huge Data Sets

Supervised, Semi-supervised, and Unsupervised Learning
Buch | Hardcover
XVI, 260 Seiten
2006 | 2006
Springer Berlin (Verlag)
978-3-540-31681-7 (ISBN)

Lese- und Medienproben

Kernel Based Algorithms for Mining Huge Data Sets - Te-Ming Huang, Vojislav Kecman, Ivica Kopriva
106,99 inkl. MwSt

"Kernel Based Algorithms for Mining Huge Data Sets" is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differences between the two most popular unsupervised techniques, the principal component analysis (PCA) and the independent component analysis (ICA). The book presents various examples, software, algorithmic solutions enabling the reader to develop their own codes for solving the problems. The book is accompanied by a website for downloading both data and software for huge data sets modeling in a supervised and semisupervised manner, as well as MATLAB based PCA and ICA routines for unsupervised learning. The book focuses on a broad range of machine learning algorithms and it is particularly aimed at students, scientists, and practicing researchers in bioinformatics (gene microarrays), text-categorization, numerals recognition, as well as in the images and audio signals de-mixing (blind source separation) areas.

Support Vector Machines in Classification and Regression - An Introduction.- Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets: Theory and Performance.- Feature Reduction with Support Vector Machines and Application in DNA Microarray Analysis.- Semi-supervised Learning and Applications.- Unsupervised Learning by Principal and Independent Component Analysis.

Erscheint lt. Verlag 2.3.2006
Reihe/Serie Studies in Computational Intelligence
Zusatzinfo XVI, 260 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 530 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Technik
Schlagworte algorithm • Algorithmen • algorithms • Analysis • Bioinformatics • classification • Hardcover, Softcover / Technik/Allgemeines, Lexika • HC/Technik/Allgemeines, Lexika • Kernel Based Algorithms • learning • Learning from Data • machine learning • MATLAB • Mining Huge Data Sets • Modeling • Regression • Semi-Supervised Learning • Signal • supervised learning • Support Vector Machines • Unsupervised Learning
ISBN-10 3-540-31681-7 / 3540316817
ISBN-13 978-3-540-31681-7 / 9783540316817
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90