Für diesen Artikel ist leider kein Bild verfügbar.

Tutorials in Biostatistics V 2 – Statistical Modelling of Complex Medical Data

RJ D′Agostino (Autor)

Software / Digital Media
496 Seiten
2005
John Wiley & Sons Ltd (Hersteller)
978-0-470-02372-3 (ISBN)
149,94 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
The Tutorials in Biostatistics have become a very popular feature of the prestigious Wiley journal, Statistics in Medicine (SIM). The introductory style and practical focus make them accessible to a wide audience including medical practitioners with limited statistical knowledge. This book represents the second of two volumes presenting the best tutorials published in SIM, focusing on statistical modeling of complex data. Topics include clustered data, hierarchical models, mixed models, genetic modeling, and meta-analysis. Each tutorial is focused on a medical problem, has been fully peer-reviewed and edited, and is authored by leading researchers in biostatistics. Many articles include an appendix on the latest developments since publication in the journal and additional references. This will appeal to statisticians working in medical research, as well as statistically-minded clinicians, biologists, epidemiologists and geneticists. It will also appeal to graduate students of biostatistics.

Ralph D'Agostino, Boston University, USA One of the editors of Statistics in Medicine and editor of the Tutorials in Biostatistics series in the journal.

Preface. Preface to Volume 2. Part I: MODELLING A SINGLE DATA SET. 1.1 Clustered Data. Extending the Simple Linear Regression Model to Account for Correlated Responses: An Introduction to Generalized Estimating Equations and Multi-Level Mixed Modelling (Paul Burton et al). 1.2 Hierarchical Modelling. An Introduction to Hierarchical Linear Modelling (Lisa M. Sullivan et al). Multilevel Modelling of Medical Data (Harvey Goldstein et al). Hierarchical Linear Models for the Development of Growth Curves: An Example with Body Mass Index in Overweight /Obese Adults (Moonseong Heo et al). 1.3 Mixed Models. Using the General Linear Mixed Model to Analyse Unbalanced Repeated Measures and Longitudinal Data (Avital Cnaan et al). Modelling Covariance Structure in the Analysis of Repeated Measures Data (Ramon C. Littell et al). Covariance Models for Nested Repeated Measures Data: Analysis of Ovarian Steroid Secretion Data (Taesung Park and Young Jack Lee). 1.4 Likelihood Modelling. Likelihood Methods for Measuring Statistical Evidence (Jeffrey D. Blume). Part II: MODELLING MULTIPLE DATA SETS: META-ANALYSIS. Meta-Analysis: Formulating, Evaluating, Combining, and Reporting (Sharon-Lise T. Normand ). Advanced Methods in Meta-Analysis: Multivariate Approach and Meta-Regression (Hans C. van Houwelingen et al). Part III: MODELLING GENETIC DATA: STATISTICAL GENETICS. Genetic Epidemiology: A Review of the Statistical Basis (E. A. Thompson). Genetic Mapping of Complex Traits (Jane M. Olson et al). A Statistical Perspective on Gene Expression Data Analysis (Jaya M. Satagopan and Katherine S. Panageas). Part IV: DATA REDUCTION OF COMPLEX DATA SETS. Statistical Approaches to Human Brain Mapping by Functional Magnetic Resonance Imaging (Nicholas Lange). Disease Map Reconstruction (Andrew B. Lawson). PART V: SIMPLIFIED PRESENTATION OF MULTIVARIATE DATA. Presentation of Multivariate Data for Clinical Use: The Framingham Study Risk Score Functions (Lisa M. Sullivan et al).

Erscheint lt. Verlag 30.8.2005
Verlagsort Chichester
Sprache englisch
Maße 210 x 268 mm
Gewicht 1270 g
Themenwelt Mathematik / Informatik Mathematik Statistik
ISBN-10 0-470-02372-4 / 0470023724
ISBN-13 978-0-470-02372-3 / 9780470023723
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich