Derivative-free DIRECT-type Global Optimization (eBook)

Applications and Software
eBook Download: PDF
2023 | 1st ed. 2023
X, 122 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-46537-6 (ISBN)

Lese- und Medienproben

Derivative-free DIRECT-type Global Optimization - Linas Stripinis, Remigijus Paulavičius
Systemvoraussetzungen
48,14 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

After providing an in-depth introduction to derivative-free global optimization with various constraints, this book presents new original results from well-known experts on the subject. A primary focus of this book is the well-known class of deterministic DIRECT (DIviding RECTangle)-type algorithms. This book describes a new set of algorithms derived from newly developed partitioning, sampling, and selection approaches in the box- and generally-constrained global optimization, including extensions to multi-objective optimization. DIRECT-type optimization algorithms are discussed in terms of fundamental principles, potential, and boundaries of their applicability. The algorithms are analyzed from various perspectives to offer insight into their main features. This explains how and why they are effective at solving optimization problems. As part of this book, the authors also present several techniques for accelerating the DIRECT-type algorithms through parallelization and implementing efficient data structures by revealing the pros and cons of the design challenges involved. A collection of DIRECT-type algorithms described and analyzed in this book is available in DIRECTGO, a MATLAB toolbox on GitHub. Lastly, the authors demonstrate the performance of the algorithms for solving a wide range of global optimization problems with various constraints ranging from a few to hundreds of variables.

Additionally, well-known practical problems from the literature are used to demonstrate the effectiveness of the developed algorithms. It is evident from these numerical results that the newly developed approaches are capable of solving problems with a wide variety of structures and complexity levels.

Since implementations of the algorithms are publicly available, this monograph is full of examples showing how to use them and how to choose the most efficient ones, depending on the nature of the problem being solved. Therefore, many specialists, students, researchers, engineers, economists, computer scientists, operations researchers, and others will find this book interesting and helpful.



Linas Stripinis received a Ph.D. degree in informatics from Vilnius University, Lithuania, in 2021. He is currently a researcher at Vilnius University. His research interests include global optimization, optimization software, parallel computing, and machine learning techniques.

Remigijus Paulavicius received a Ph.D. degree in computer science from Vytautas Magnus University, Lithuania, in 2010. He was a Postdoctoral Researcher at Vilnius University, Lithuania, and a Research Associate at Imperial College London, UK. Since 2019, he has been a member of the Young Academy of the Lithuanian Academy of Sciences and a professor of informatics at the Institute of Data Science and Digital Technologies of Vilnius University. His research interests include global optimization, optimization software, parallel and quantum computing, and distributed ledger technologies.
Erscheint lt. Verlag 27.11.2023
Reihe/Serie SpringerBriefs in Optimization
SpringerBriefs in Optimization
Zusatzinfo X, 122 p. 43 illus., 39 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Mathematik / Informatik Mathematik
Schlagworte derivative-free optimization • DIRECT-Type Algorithm • DIRECT-Type Constraint-Handling • Global Optimization • Hidden Constraints • Lipschitz optimization • Multi-Objective Optimization • parallel optimization • Sampling-Based Algorithm
ISBN-10 3-031-46537-7 / 3031465377
ISBN-13 978-3-031-46537-6 / 9783031465376
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das umfassende Handbuch

von Johannes Ernesti; Peter Kaiser

eBook Download (2023)
Rheinwerk Computing (Verlag)
31,43
Das Handbuch für Webentwickler

von Philip Ackermann

eBook Download (2023)
Rheinwerk Computing (Verlag)
34,93
Deterministische und randomisierte Algorithmen

von Volker Turau; Christoph Weyer

eBook Download (2024)
De Gruyter (Verlag)
64,95