List Decoding of Error-Correcting Codes - Venkatesan Guruswami

List Decoding of Error-Correcting Codes

Winning Thesis of the 2002 ACM Doctoral Dissertation Competition
Buch | Softcover
XX, 352 Seiten
2004 | 2005
Springer Berlin (Verlag)
978-3-540-24051-8 (ISBN)
53,49 inkl. MwSt
This monograph is a thoroughly revised and extended version of the author's PhD thesis, which was selected as the winning thesis of the 2002 ACM Doctoral Dissertation Competition. Venkatesan Guruswami did his PhD work at the MIT with Madhu Sudan as thesis adviser.
Starting with the seminal work of Shannon and Hamming, coding theory has generated a rich theory of error-correcting codes. This theory has traditionally gone hand in hand with the algorithmic theory of decoding that tackles the problem of recovering from the transmission errors efficiently. This book presents some spectacular new results in the area of decoding algorithms for error-correcting codes. Specificially, it shows how the notion of list-decoding can be applied to recover from far more errors, for a wide variety of error-correcting codes, than achievable before.
The style of the exposition is crisp and the enormous amount of information on combinatorial results, polynomial time list decoding algorithms, and applications is presented in well structured form.

1 Introduction.- 1 Introduction.- 2 Preliminaries and Monograph Structure.- I Combinatorial Bounds.- 3 Johnson-Type Bounds and Applications to List Decoding.- 4 Limits to List Decodability.- 5 List Decodability Vs. Rate.- II Code Constructions and Algorithms.- 6 Reed-Solomon and Algebraic-Geometric Codes.- 7 A Unified Framework for List Decoding of Algebraic Codes.- 8 List Decoding of Concatenated Codes.- 9 New, Expander-Based List Decodable Codes.- 10 List Decoding from Erasures.- III Applications.- Interlude.- III Applications.- 11 Linear-Time Codes for Unique Decoding.- 12 Sample Applications Outside Coding Theory.- 13 Concluding Remarks.- A GMD Decoding of Concatenated Codes.

Erscheint lt. Verlag 29.11.2004
Reihe/Serie Lecture Notes in Computer Science
Zusatzinfo XX, 352 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 555 g
Themenwelt Informatik Theorie / Studium Algorithmen
Schlagworte algebraic-geometric codes • Algorithm analysis and problem complexity • algorithms • Code • Codierung • Codierung / Kodierung • coding theory • Complexity theory • concatenated codes • Decoding • Decoding Algorithms • encoding • error-correcting code • error-detecting codes • Fehlererkennung • Fehlererkennung / Troubleshooting • hamming codes • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • Information • Informationstheorie • Information Theory • list decoding • polynomial time decoding algorithms • reed-solomon codes • Shannon
ISBN-10 3-540-24051-9 / 3540240519
ISBN-13 978-3-540-24051-8 / 9783540240518
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99