Low-Code AI - Gwendolyne Stripling, Michael Abel

Low-Code AI

a practical project-driven introduction to machine learning
Buch | Softcover
350 Seiten
2023 | 1. Auflage
O'Reilly Media (Verlag)
978-1-0981-4682-5 (ISBN)
79,80 inkl. MwSt
Take a data-first and use-case driven approach to understanding machine learning and deep learning concepts with Low-Code AI. This hands-on guide presents three problem-focused ways to learn ML: no code using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. You'll learn key ML concepts by using real-world datasets with realistic problems.

Business and data analysts get a project-based introduction to ML/AI using a detailed, data-driven approach: loading and analyzing data, feeding data into an ML model; building, training, and testing; and deploying the model into production. Authors Michael Abel and Gwendolyn Stripling show you how to build machine learning models for retail, healthcare, financial services, energy, and telecommunications.

You'll learn how to:

Distinguish structured and unstructured data and understand the different challenges they present
Visualize and analyze data
Preprocess data for input into a machine learning model
Differentiate between the regression and classification supervised learning models
Compare different machine learning model types and architectures, from no code to low-code to custom training
Design, implement, and tune ML models
Export data to a GitHub repository for data management and governance
Erscheinungsdatum
Zusatzinfo Illustrationen
Verlagsort Sebastopol
Sprache englisch
Maße 178 x 232 mm
Einbandart kartoniert
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-0981-4682-4 / 1098146824
ISBN-13 978-1-0981-4682-5 / 9781098146825
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
28,00