Singular Integral Operators, Quantitative Flatness, and Boundary Problems (eBook)

eBook Download: PDF
2022 | 1st ed. 2022
VIII, 601 Seiten
Springer International Publishing (Verlag)
978-3-031-08234-4 (ISBN)

Lese- und Medienproben

Singular Integral Operators, Quantitative Flatness, and Boundary Problems - Juan José Marín, José María Martell, Dorina Mitrea, Irina Mitrea, Marius Mitrea
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This monograph provides a state-of-the-art, self-contained account on the effectiveness of the method of boundary layer potentials in the study of elliptic boundary value problems with boundary data in a multitude of function spaces. Many significant new results are explored in detail, with complete proofs, emphasizing and elaborating on the link between the geometric measure-theoretic features of an underlying surface and the functional analytic properties of singular integral operators defined on it. Graduate students, researchers, and professionals interested in a modern account of the topic of singular integral operators and boundary value problems - as well as those more generally interested in harmonic analysis, PDEs, and geometric analysis - will find this text to be a valuable addition to the mathematical literature.


Juan José Marín is a harmonic analyst whose research interests also include boundary value problems and geometric measure theory. He received a Ph.D. in mathematics in 2019 from Universidad Aut/'onoma de Madrid and Instituto de Ciencias Matem/'aticas, Spain, working under the supervision of José María Martell and Marius Mitrea.

José María Martell is a mathematician specializing in the areas of harmonic analysis, partial differential equations, and geometric measure theory. He received a Ph.D. in mathematics from Universidad Autónoma de Madrid, Spain, working under the supervision of José Garcia-Cuerva. José María Martell is currently serving as the director of Instituto de Matemáticas, Spain.

Dorina Mitrea is a mathematician specializing in the areas of harmonic analysis, partial differential equations, geometric measure theory, and global analysis. She received a Ph.D. in mathematics from the University of Minnesota, working under the supervision of Eugene Fabes. Dorina Mitrea is currently serving as the chair of the Department of Mathematics, Baylor University, USA.

Irina Mitrea is an L.H. Carnell Professor and chair of the Department of Mathematics at Temple University whose expertise lies at the interface between the areas of harmonic analysis, partial differential equations, and geometric measure theory. She received her Ph.D. in mathematics from the University of Minnesota, working under the supervision of Carlos Kenig and Mikhail Safanov. 

Irina Mitrea is a Fellow of the American Mathematical Society and a Fellow of the Association for Women in Mathematics. She received a Simons Foundation Fellowship, a Von Neumann Fellowship at the Institute for Advanced Study, Princeton, and is a recipient of the Ruth Michler Memorial Prize from the Association for Women in Mathematics.

Marius Mitrea is a mathematician whose research interests lay at the confluence between harmonic analysis, partial differential equations, geometric measure theory, global analysis, and scattering. He received a Ph.D. in mathematics from the University of South Carolina, USA, working under the supervision of Björn D. Jawerth. Marius Mitrea is a Fellow of the American Mathematical Society.





Erscheint lt. Verlag 29.9.2022
Reihe/Serie Progress in Mathematics
Progress in Mathematics
Zusatzinfo VIII, 601 p. 5 illus., 3 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Schlagworte Ahlfors regular domain • Block space • Boundary layer potential • Boundary value problem • geometric measure theory • Morrey space • Muckenhoupt weight • Muckenhoupt weighted Sobolev space • Nontangentially accessible domain • singular integral operators • Uniformly rectifiable domain
ISBN-10 3-031-08234-6 / 3031082346
ISBN-13 978-3-031-08234-4 / 9783031082344
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
16,99
Grundlagen - Methoden - Anwendungen

von André Krischke; Helge Röpcke

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
34,99