Estimation in Conditionally Heteroscedastic Time Series Models - Daniel Straumann

Estimation in Conditionally Heteroscedastic Time Series Models

Buch | Softcover
XVI, 228 Seiten
2004 | 2005
Springer Berlin (Verlag)
978-3-540-21135-8 (ISBN)
106,99 inkl. MwSt

In his seminal 1982 paper, Robert F. Engle described a time series model with a time-varying volatility. Engle showed that this model, which he called ARCH (autoregressive conditionally heteroscedastic), is well-suited for the description of economic and financial price. Nowadays ARCH has been replaced by more general and more sophisticated models, such as GARCH (generalized autoregressive heteroscedastic).

This monograph concentrates on mathematical statistical problems associated with fitting conditionally heteroscedastic time series models to data. This includes the classical statistical issues of consistency and limiting distribution of estimators. Particular attention is addressed to (quasi) maximum likelihood estimation and misspecified models, along to phenomena due to heavy-tailed innovations. The used methods are based on techniques applied to the analysis of stochastic recurrence equations. Proofs and arguments are given wherever possible in full mathematical rigour. Moreover, the theory is illustrated by examples and simulation studies.

Some Mathematical Tools.- Financial Time Series: Facts and Models.- Parameter Estimation: An Overview.- Quasi Maximum Likelihood Estimation in Conditionally Heteroscedastic Time Series Models: A Stochastic Recurrence Equations Approach.- Maximum Likelihood Estimation in Conditionally Heteroscedastic Time Series Models.- Quasi Maximum Likelihood Estimation in a Generalized Conditionally Heteroscedastic Time Series Model with Heavy-tailed Innovations.- Whittle Estimation in a Heavy-tailed GARCH(1,1) Model.

From the reviews of the first edition:

"The book deals with conditionally heteroscedastic time series models. It covers classical and new topics of parameter estimation in such models. ... There are a lot of various examples and remarks which clarify the presented general results. Some numerical examples and simulations are given. Detailed discussions and comparisons with known results are presented in each chapter." (Andrew Olenko, Zentralblatt MATH, Vol. 1086, 2006)

Erscheint lt. Verlag 19.11.2004
Reihe/Serie Lecture Notes in Statistics
Zusatzinfo XVI, 228 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 380 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Wirtschaft Allgemeines / Lexika
Wirtschaft Betriebswirtschaft / Management
Schlagworte Estimator • Financial Time Series • Fitting • GARCH • Innovation • likelihood • Parameter • Quantitative Finance • Time Series • Volatility
ISBN-10 3-540-21135-7 / 3540211357
ISBN-13 978-3-540-21135-8 / 9783540211358
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95