Machine Learning for Authorship Attribution and Cyber Forensics - Farkhund Iqbal, Mourad Debbabi, Benjamin C. M. Fung

Machine Learning for Authorship Attribution and Cyber Forensics

Buch | Hardcover
IX, 158 Seiten
2020 | 1st ed. 2020
Springer International Publishing (Verlag)
978-3-030-61674-8 (ISBN)
171,19 inkl. MwSt

The book first explores the cybersecurity's landscape and the inherent susceptibility of online communication system such as e-mail, chat conversation and social media in cybercrimes. Common sources and resources of digital crimes, their causes and effects together with the emerging threats for society are illustrated in this book. This book not only explores the growing needs of cybersecurity and digital forensics but also investigates relevant technologies and methods to meet the said needs. Knowledge discovery, machine learning and data analytics are explored for collecting cyber-intelligence and forensics evidence on cybercrimes.

Online communication documents, which are the main source of cybercrimes are investigated from two perspectives: the crime and the criminal. AI and machine learning methods are applied to detect illegal and criminal activities such as bot distribution, drug trafficking and child pornography. Authorship analysis is applied to identify the potentialsuspects and their social linguistics characteristics. Deep learning together with frequent pattern mining and link mining techniques are applied to trace the potential collaborators of the identified criminals.

Finally, the aim of the book is not only to investigate the crimes and identify the potential suspects but, as well, to collect solid and precise forensics evidence to prosecute the suspects in the court of law. 


1. Cybersecurity And Cybercrime Investigation.- 2. Machine Learning Framework For Messaging Forensics.- 3. Header-Level Investigation And Analyzing Network Information.- 4. Authorship Analysis Approaches.- 5. Authorship Analysis - Writeprint Mining For Authorship Attribution.- 6. Authorship Attribution With Few Training Samples.- 7. Authorship Characterization.- 8. Authorship Verification.- 9. Authorship Attribution Using Customized Associative Classification.- 10. Criminal Information Mining.- 11. Artificial Intelligence And Digital Forensics.

Erscheinungsdatum
Reihe/Serie International Series on Computer, Entertainment and Media Technology
Zusatzinfo IX, 158 p. 38 illus., 28 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 424 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Schlagworte anonymity • Associative Classification • authorship analysis • Authorship characterization • Authorship identification • classification • Clustering • Crime investigation • Criminal Networks • cybercrime • cybercrimes • cyber forensics • Data Mining • forensic investigation • rule mining • Statistical Analysis • Stylometric features • Writeprint
ISBN-10 3-030-61674-6 / 3030616746
ISBN-13 978-3-030-61674-8 / 9783030616748
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90