Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning -

Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning

Second MICCAI Workshop, DART 2020, and First MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings
Buch | Softcover
XIII, 212 Seiten
2020 | 1st ed. 2020
Springer International Publishing (Verlag)
978-3-030-60547-6 (ISBN)
53,49 inkl. MwSt

This book constitutes the refereed proceedings of the Second MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2020, and the First MICCAI Workshop on Distributed and Collaborative Learning, DCL 2020, held in conjunction with MICCAI 2020 in October 2020. The conference was planned to take place in Lima, Peru, but changed to an online format due to the Coronavirus pandemic. 

For DART 2020, 12 full papers were accepted from 18 submissions. They deal with methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical settings by making them robust and consistent across different domains.

For DCL 2020, the 8 papers included in this book were accepted from a total of 12 submissions. They focus on the comparison, evaluation and discussion of methodological advancement and practical ideas about machine learning applied to problems where data cannot be stored in centralized databases; where information privacy is a priority; where it is necessary to deliver strong guarantees on the amount and nature of private information that may be revealed by the model as a result of training; and where it's necessary to orchestrate, manage and direct clusters of nodes participating in the same learning task.



a-Unet++:A Data-driven Neural Network Architecture for Medical Image Segmentation.- DAPR-Net: Domain Adaptive Predicting-refinement Network for Retinal Vessel Segmentation.- Augmented Radiology: Patient-wise Feature Transfer Model for Glioma Grading.- Attention-Guided Deep Domain Adaptation for Brain Dementia Identication with Multi-Site Neuroimaging Data.- Registration of Histopathology Images Using Self Supervised Fine Grained Feature Maps.- Cross-Modality Segmentation by Self-Supervised Semantic Alignment in Disentangled Content Space.- Semi-supervised Pathology Segmentation with Disentangled Representations.- Domain Generalizer: A Few-shot Meta Learning Framework for Domain Generalization in Medical Imaging.- Parts2Whole: Self-supervised Contrastive Learning via Reconstruction.- Cross-View Label Transfer in Knee MR Segmentation Using Iterative Context Learning.- Continual Class Incremental Learning for CT Thoracic Segmentation.- First U-Net Layers Contain More Domain SpecificInformation Than The Last Ones.- Siloed Federated Learning for Multi-Centric Histopathology Datasets.- On the Fairness of Privacy-Preserving Representations in Medical Applications.- Inverse Distance Aggregation for Federated Learning with Non-IID Data.- Weight Erosion: an Update Aggregation Scheme for Personalized Collaborative Machine Learning.- Federated Gradient Averaging for Multi-Site Training with Momentum-Based Optimizers.- Federated Learning for Breast Density Classification: A Real-World Implementation.- Automated Pancreas Segmentation Using Multi-institutional Collaborative Deep Learning.- Fed-BioMed: A general open-source frontend framework for federated learning in healthcare.

Erscheinungsdatum
Reihe/Serie Image Processing, Computer Vision, Pattern Recognition, and Graphics
Lecture Notes in Computer Science
Zusatzinfo XIII, 212 p. 86 illus., 67 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 352 g
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Artificial Intelligence • Bioinformatics • Computer Networks • Computer Security • computer vision • CT image • Deep learning • Education • Image Analysis • Image Processing • image reconstruction • Image Segmentation • Imaging Systems • learning • Learning Algorithms • machine learning • Medical Images • Medical Imaging • Network Protocols • Neural networks • pattern recognition • segmentation methods • Semi-Supervised Learning • supervised learning
ISBN-10 3-030-60547-7 / 3030605477
ISBN-13 978-3-030-60547-6 / 9783030605476
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen

von Lydia Sloan Cline

Buch | Softcover (2022)
dpunkt (Verlag)
34,90
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
19,95
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
24,95