Parabolic Wave Equations with Applications -  Michael D. Collins,  William L. Siegmann

Parabolic Wave Equations with Applications (eBook)

eBook Download: PDF
2019 | 1st ed. 2019
IX, 135 Seiten
Springer New York (Verlag)
978-1-4939-9934-7 (ISBN)
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book introduces parabolic wave equations, their key methods of numerical solution, and applications in seismology and ocean acoustics. The parabolic equation method provides an appealing combination of accuracy and efficiency for many nonseparable wave propagation problems in geophysics. While the parabolic equation method was pioneered in the 1940s by Leontovich and Fock who applied it to radio wave propagation in the atmosphere, it thrived in the 1970s due to its usefulness in seismology and ocean acoustics. 

The book covers progress made following the parabolic equation's ascendancy in geophysics. It begins with the necessary preliminaries on the elliptic wave equation and its analysis from which the parabolic wave equation is derived and introduced. Subsequently, the authors demonstrate the use of rational approximation techniques, the Padé solution in particular, to find numerical solutions to the energy-conserving parabolic equation, three-dimensional parabolic equations, and horizontal wave equations. 

The rest of the book demonstrates applications to seismology, ocean acoustics, and beyond, with coverage of elastic waves, sloping interfaces and boundaries, acousto-gravity waves, and waves in poro-elastic media. Overall, it will be of use to students and researchers in wave propagation, ocean acoustics, geophysical sciences and more.


Michael D. Collins was born in Greenville, Pennsylvania. He received the B.S. degree in mathematics from the Massachusetts Institute of Technology and the Ph.D. degree in applied mathematics from Northwestern University. Since 1985, he has worked for the Naval Research Laboratory. His research interests are ocean acoustics, wave propagation, inverse problems, and the Ivory-billed Woodpecker. Dr. Collins is a member of the Institute of Electrical and Electronics Engineers, the American Geophysical Union, and the Society for Industrial and Applied Matehmatics.

William L. Siegmann was born in Pittsburgh, Pennsylvania. He received the B.S. and M.S. degrees in mathematics and the Ph.D. in applied mathematics from the Massachusetts Institute of Technology. From 1968 to 1970, he was a Postdoctoral Fellow in the Department of Mechanics at Johns Hopkins University. Since 1970, he has been in the Department of Mathematical Sciences at Rensselaer Polytechnic Institute. His research interests are ocean acoustics and wave propagation methods. Dr. Siegmann is a member of the IEEE Ocean Engineering Society, the Acoustical Society of America, and The Oceanography Society.

This book introduces parabolic wave equations, their key methods of numerical solution, and applications in seismology and ocean acoustics. The parabolic equation method provides an appealing combination of accuracy and efficiency for many nonseparable wave propagation problems in geophysics. While the parabolic equation method was pioneered in the 1940s by Leontovich and Fock who applied it to radio wave propagation in the atmosphere, it thrived in the 1970s due to its usefulness in seismology and ocean acoustics. The book covers progress made following the parabolic equation's ascendancy in geophysics. It begins with the necessary preliminaries on the elliptic wave equation and its analysis from which the parabolic wave equation is derived and introduced. Subsequently, the authors demonstrate the use of rational approximation techniques, the Pade solution in particular, to find numerical solutions to the energy-conserving parabolic equation, three-dimensionalparabolic equations, and horizontal wave equations. The rest of the book demonstrates applications to seismology, ocean acoustics, and beyond, with coverage of elastic waves, sloping interfaces and boundaries, acousto-gravity waves, and waves in poro-elastic media. Overall, it will be of use to students and researchers in wave propagation, ocean acoustics, geophysical sciences and more.
Erscheint lt. Verlag 4.11.2019
Zusatzinfo IX, 135 p. 74 illus., 37 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Naturwissenschaften Geowissenschaften Geophysik
Naturwissenschaften Geowissenschaften Hydrologie / Ozeanografie
Naturwissenschaften Physik / Astronomie Mechanik
Schlagworte Acoustic Wave Equation • anisotropic elastic wave • elastic parabolic equation • elastic wave equation • parabolic wave equation • Partial differential equations • poro-elastic parabolic equation • poro-elastic wave equation • rational approximation method • split-step Padé solution • three-dimensional parabolic equation
ISBN-10 1-4939-9934-6 / 1493999346
ISBN-13 978-1-4939-9934-7 / 9781493999347
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich