Polynomial One-cocycles For Knots And Closed Braids - Thomas Fiedler

Polynomial One-cocycles For Knots And Closed Braids

(Autor)

Buch | Hardcover
260 Seiten
2019
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-12-1029-7 (ISBN)
109,95 inkl. MwSt
Traditionally, knot theory deals with diagrams of knots and the search of invariants of diagrams which are invariant under the well known Reidemeister moves. This book goes one step beyond: it gives a method to construct invariants for one parameter famillies of diagrams and which are invariant under 'higher' Reidemeister moves. Luckily, knots in 3-space, often called classical knots, can be transformed into knots in the solid torus without loss of information. It turns out that knots in the solid torus have a particular rich topological moduli space. It contains many 'canonical' loops to which the invariants for one parameter families can be applied, in order to get a new sort of invariants for classical knots.
Erscheinungsdatum
Reihe/Serie Series on Knots & Everything ; 64
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 981-12-1029-2 / 9811210292
ISBN-13 978-981-12-1029-7 / 9789811210297
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
109,95