Algebraic Invariants Of Links
Seiten
2002
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-238-154-5 (ISBN)
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-238-154-5 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
A reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes features of the multicomponent case not normally considered by knot theorists, such as longitudes, the lower central series as a source of invariants, and more.
This book is intended as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes features of the multicomponent case not normally considered by knot theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, free coverings of homology boundary links, the fact that links are not usually boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology.
This book is intended as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes features of the multicomponent case not normally considered by knot theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, free coverings of homology boundary links, the fact that links are not usually boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology.
Contents: Abelian Covers: Links; Homology and Duality in Covers; Determinantal Invariants; The Maximal Abelian Cover; Sublinks and Other Abelian Covers; Applications: Special Cases and Symmetries: Knot Modules; Links with Two Components; Symmetries; Free Covers, Nilpotent Quotients and Completion: Free Covers; Nilpotent Quotients; Algebraic Closure; Disc Links.
Erscheint lt. Verlag | 9.10.2002 |
---|---|
Reihe/Serie | Series on Knots & Everything ; 32 |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 981-238-154-6 / 9812381546 |
ISBN-13 | 978-981-238-154-5 / 9789812381545 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
64,95 €
unlock your imagination with the narrative of numbers
Buch | Softcover (2024)
Advantage Media Group (Verlag)
19,90 €
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber
Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
20,00 €