Crowdsourced Data Management -  Ju Fan,  Michael J. Franklin,  Guoliang Li,  Jiannan Wang,  Yudian Zheng

Crowdsourced Data Management (eBook)

Hybrid Machine-Human Computing
eBook Download: PDF
2018 | 1st ed. 2018
XII, 159 Seiten
Springer Singapore (Verlag)
978-981-10-7847-7 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides an overview of crowdsourced data management. Covering all aspects including the workflow, algorithms and research potential, it particularly focuses on the latest techniques and recent advances. The authors identify three key aspects in determining the performance of crowdsourced data management: quality control, cost control and latency control. By surveying and synthesizing a wide spectrum of studies on crowdsourced data management, the book outlines important factors that need to be considered to improve crowdsourced data management. It also introduces a practical crowdsourced-database-system design and presents a number of crowdsourced operators. Self-contained and covering theory, algorithms, techniques and applications, it is a valuable reference resource for researchers and students new to crowdsourced data management with a basic knowledge of data structures and databases.



Guoliang Li is an associate professor at the Department of Computer Science, Tsinghua University, Beijing, China. His research interests include crowdsourced data management, big spatio-temporal data analytics, large-scale data cleaning and integration. He has published more than 100 papers at leading conferences and in journals, such as SIGMOD, VLDB, ICDE, SIGKDD, SIGIR, TODS, VLDB Journal, and TKDE. He is a PC co-chair of WAIM 2014, WebDB 2014, and NDBC 2016. He servers as associate editor for IEEE Transactions and Data Engineering, the VLDB Journal, BigData Research, IEEE Data Engineering Bulletin. He has regularly served as a PC member for several conferences, such as SIGMOD, VLDB, KDD, ICDE, WWW, IJCAI, and AAAI. His papers have been cited more than 4500 times. He received the VLDB 2017 Early Research Contribution Award, IEEE TCDE Early Career Award 2014, The national youth talent support program 2016, Young ChangJiang Scholar 2016, NSFC Excellent Young Scholars Award 2014, and the CCF Young Scientist award 2014.

Prof. Michael J. Franklin is the inaugural holder of the Liew Family Chair of Computer Science at the University of Chicago. An authority on databases, data analytics, data management and distributed systems, he also serves as senior advisor to the provost on computation and data science. Most recently he was the Thomas M. Siebel Professor of Computer Science and chair of the Computer Science Division of the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley, where he currently is an adjunct professor. He co-founded and directs Berkeley's Algorithms, Machines and People Laboratory (AMPLab), a leading academic big data analytics research center. The AMPLab won a National Science Foundation CISE 'Expeditions in Computing' award, which was announced as part of the White House Big Data Research initiative in March 2012, and has received support from over 30 industrial sponsors. AMPLab has created industry-changing open source big data software including Apache Spark and BDAS, the Berkeley Data Analytics Stack.   At Berkeley Professor Franklin also served as an executive committee member for the Berkeley Institute for Data Science, a campus-wide initiative to advance data science environments. He is a fellow of the Association for Computing Machinery and two-time recipient of the ACM SIGMOD.


This book provides an overview of crowdsourced data management. Covering all aspects including the workflow, algorithms and research potential, it particularly focuses on the latest techniques and recent advances. The authors identify three key aspects in determining the performance of crowdsourced data management: quality control, cost control and latency control. By surveying and synthesizing a wide spectrum of studies on crowdsourced data management, the book outlines important factors that need to be considered to improve crowdsourced data management. It also introduces a practical crowdsourced-database-system design and presents a number of crowdsourced operators. Self-contained and covering theory, algorithms, techniques and applications, it is a valuable reference resource for researchers and students new to crowdsourced data management with a basic knowledge of data structures and databases.

Guoliang Li is an associate professor at the Department of Computer Science, Tsinghua University, Beijing, China. His research interests include crowdsourced data management, big spatio-temporal data analytics, large-scale data cleaning and integration. He has published more than 100 papers at leading conferences and in journals, such as SIGMOD, VLDB, ICDE, SIGKDD, SIGIR, TODS, VLDB Journal, and TKDE. He is a PC co-chair of WAIM 2014, WebDB 2014, and NDBC 2016. He servers as associate editor for IEEE Transactions and Data Engineering, the VLDB Journal, BigData Research, IEEE Data Engineering Bulletin. He has regularly served as a PC member for several conferences, such as SIGMOD, VLDB, KDD, ICDE, WWW, IJCAI, and AAAI. His papers have been cited more than 4500 times. He received the VLDB 2017 Early Research Contribution Award, IEEE TCDE Early Career Award 2014, The national youth talent support program 2016, Young ChangJiang Scholar 2016, NSFC Excellent Young Scholars Award 2014, and the CCF Young Scientist award 2014. Prof. Michael J. Franklin is the inaugural holder of the Liew Family Chair of Computer Science at the University of Chicago. An authority on databases, data analytics, data management and distributed systems, he also serves as senior advisor to the provost on computation and data science. Most recently he was the Thomas M. Siebel Professor of Computer Science and chair of the Computer Science Division of the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley, where he currently is an adjunct professor. He co-founded and directs Berkeley’s Algorithms, Machines and People Laboratory (AMPLab), a leading academic big data analytics research center. The AMPLab won a National Science Foundation CISE "Expeditions in Computing" award, which was announced as part of the White House Big Data Research initiative in March 2012, and has received support from over 30 industrial sponsors. AMPLab has created industry-changing open source big data software including Apache Spark and BDAS, the Berkeley Data Analytics Stack.   At Berkeley Professor Franklin also served as an executive committee member for the Berkeley Institute for Data Science, a campus-wide initiative to advance data science environments. He is a fellow of the Association for Computing Machinery and two-time recipient of the ACM SIGMOD.

1. Introduction.- 2. Crowdsourcing Background. 3. Quality Control.- 4. Cost Control.- 5. Latency Control.- 6. Crowdsourcing Database Systems and Optimization.- 7. Crowdsourced Operators.- Conclusion.

Erscheint lt. Verlag 12.10.2018
Zusatzinfo XII, 159 p. 66 illus., 42 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Netzwerke
Informatik Software Entwicklung Mobile- / App-Entwicklung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Big data management • Cost Control • Crowdsourced Data Management • human computation • Hybrid Machine-Human Computation • Latency Control • quality control
ISBN-10 981-10-7847-5 / 9811078475
ISBN-13 978-981-10-7847-7 / 9789811078477
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
24,99