Guide to Vulnerability Analysis for Computer Networks and Systems (eBook)
X, 384 Seiten
Springer International Publishing (Verlag)
978-3-319-92624-7 (ISBN)
This professional guide and reference examines the challenges of assessing security vulnerabilities in computing infrastructure. Various aspects of vulnerability assessment are covered in detail, including recent advancements in reducing the requirement for expert knowledge through novel applications of artificial intelligence. The work also offers a series of case studies on how to develop and perform vulnerability assessment techniques using start-of-the-art intelligent mechanisms.
Topics and features: provides tutorial activities and thought-provoking questions in each chapter, together with numerous case studies; introduces the fundamentals of vulnerability assessment, and reviews the state of the art of research in this area; discusses vulnerability assessment frameworks, including frameworks for industrial control and cloud systems; examines a range of applications that make use of artificial intelligence to enhance the vulnerability assessment processes; presents visualisation techniques that can be used to assist the vulnerability assessment process.In addition to serving the needs of security practitioners and researchers, this accessible volume is also ideal for students and instructors seeking a primer on artificial intelligence for vulnerability assessment, or a supplementary text for courses on computer security, networking, and artificial intelligence.
Dr. Simon Parkinson is a Senior Lecturer in Computer Science in the School of Computing and Engineering, University of Huddersfield, UK.
Prof. Andrew Crampton is a Professor of Computational Mathematics in the School of Computing and Engineering, and the Associate Dean for Teaching and Learning at the University of Huddersfield.
Prof. Richard Hill is a Professor of Intelligent Systems, the Head of the Department of Informatics, and the Director of the Centre for Industrial Analytics at the University of Huddersfield. His other publications include the successful Springer titles Guide to Security Assurance for Cloud Computing, Big-Data Analytics and Cloud Computing, Guide to Cloud Computing, and Cloud Computing for Enterprise Architectures.
Dr. Simon Parkinson is a Senior Lecturer in Computer Science in the School of Computing and Engineering, University of Huddersfield, UK.Prof. Andrew Crampton is a Professor of Computational Mathematics in the School of Computing and Engineering, and the Associate Dean for Teaching and Learning at the University of Huddersfield.Prof. Richard Hill is a Professor of Intelligent Systems, the Head of the Department of Informatics, and the Director of the Centre for Industrial Analytics at the University of Huddersfield. His other publications include the successful Springer titles Guide to Security Assurance for Cloud Computing, Big-Data Analytics and Cloud Computing, Guide to Cloud Computing, and Cloud Computing for Enterprise Architectures.
Part I: Introduction and State of the Art
Review of the State of the Art of Vulnerability Assessment Using Artificial Intelligence Saad Khan and Simon Parkinson
A Survey of Machine Learning Algorithms and Their Application in Information Security Mark Stamp
Part II: Vulnerability Assessment Frameworks
Vulnerability Assessment of Cybersecurity for SCADA Systems Kyle Coffey, Leandros A. Maglaras, Richard Smith, Helge Janicke, Mohamed Amine Ferrag, Abdelouahid Derhab, Mithun Mukherjee, Stylianos Rallis, and Awais Yousaf
A Predictive Model for Risk and Trust Assessment in Cloud Computing: Taxonomy and Analysis for Attack Pattern Detection Alexandros Chrysikos and Stephen McGuire
AI and Metrics-Based Vulnerability-Centric Cyber Security Assessment and Countermeasure Selection Igor Kotenko, Elena Doynikova, Andrey Chechulin, and Andrey Fedorchenko
Artificial Intelligence Agents as Mediators of Trustless Security Systems and Distributed Computing Applications Steven Walker-Roberts and Mohammad Hammoudeh
Part III: Applications of Artificial Intelligence
Automated Planning of Administrative Tasks Using Historic Events: a File System Case Study Saad Khan and Simon Parkinson
Defending Against Chained Cyber-Attacks by Adversarial Agents Vivin Paliath and Paulo Shakarian
Vulnerability Detection and Analysis in Adversarial Deep Learning Yi Shi, Yalin E. Sagduyu, Kemal Davaslioglu, and Renato Levy
SOCIO-LENS: Spotting Unsolicited Callers Through Network Analysis Muhammad Ajmal Azad, Junaid Arshad, and Farhan Riaz
Function Call Graphs Versus Machine Learning for Malware Detection Deebiga Rajeswaran, Fabio Di Troia, Thomas H. Austin, and Mark Stamp
Detecting Encrypted and Polymorphic Malware Using Hidden Markov Models Dhiviya Dhanasekar, Fabio Di Troia, Katerina Potika, and Mark Stamp
Masquerade Detection on Mobile Devices Swathi Nambiar Kadala Manikoth, Fabio Di Troia, and Mark Stamp
Identifying File Interaction Patterns in Ransomware Behaviour Liam Grant and Simon Parkinson
Part IV: Visualisation
A Framework for the Visualisation of Cyber Security Requirements and its Application in BPMN Bo Zhou, Curtis Maines, Stephen Tang, and Qi Shi
Big Data and Cyber Security: A Visual Analytics Perspective Suvodeep Mazumdar and Jing Wang
Erscheint lt. Verlag | 4.9.2018 |
---|---|
Reihe/Serie | Computer Communications and Networks | Computer Communications and Networks |
Zusatzinfo | X, 384 p. 117 illus., 103 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Informatik ► Netzwerke ► Sicherheit / Firewall |
Mathematik / Informatik ► Informatik ► Web / Internet | |
Schlagworte | Anomaly and causality detection • Data acquisition • Identification of assets • knowledge extraction • Mitigation Techniques • Visualisation • vulnerability assessment |
ISBN-10 | 3-319-92624-1 / 3319926241 |
ISBN-13 | 978-3-319-92624-7 / 9783319926247 |
Haben Sie eine Frage zum Produkt? |
Größe: 10,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich