Für diesen Artikel ist leider kein Bild verfügbar.

Algorithmic Aspects of Machine Learning

(Autor)

Buch | Hardcover
158 Seiten
2018
Cambridge University Press (Verlag)
978-1-107-18458-9 (ISBN)
83,55 inkl. MwSt
Machine learning is reshaping our everyday life. This book explores the theoretical underpinnings in an accessible way, offering theoretical computer scientists an introduction to important models and problems and offering machine learning researchers a cutting-edge algorithmic toolkit.
This book bridges theoretical computer science and machine learning by exploring what the two sides can teach each other. It emphasizes the need for flexible, tractable models that better capture not what makes machine learning hard, but what makes it easy. Theoretical computer scientists will be introduced to important models in machine learning and to the main questions within the field. Machine learning researchers will be introduced to cutting-edge research in an accessible format, and gain familiarity with a modern, algorithmic toolkit, including the method of moments, tensor decompositions and convex programming relaxations. The treatment beyond worst-case analysis is to build a rigorous understanding about the approaches used in practice and to facilitate the discovery of exciting, new ways to solve important long-standing problems.

Ankur Moitra is the Rockwell International Associate Professor of Mathematics at Massachusetts Institute of Technology. He is a principal investigator in the Computer Science and Artificial Intelligence Lab (CSAIL), a core member of the Theory of Computation Group, Machine Learning@MIT, and the Center for Statistics. The aim of his work is to bridge the gap between theoretical computer science and machine learning by developing algorithms with provable guarantees and foundations for reasoning about their behavior. He is a recipient of a Packard Fellowship, a Sloan Fellowship, an National Science Foundation (NSF) CAREER Award, an NSF Computing and Innovation Fellowship and a Hertz Fellowship.

1. Introduction; 2. Nonnegative matrix factorization; 3. Tensor decompositions – algorithms; 4. Tensor decompositions – applications; 5. Sparse recovery; 6. Sparse coding; 7. Gaussian mixture models; 8. Matrix completion.

Erscheinungsdatum
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Maße 157 x 237 mm
Gewicht 360 g
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
ISBN-10 1-107-18458-4 / 1107184584
ISBN-13 978-1-107-18458-9 / 9781107184589
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99