First Course in Mathematical Logic (eBook)
288 Seiten
Dover Publications (Verlag)
978-0-486-15094-9 (ISBN)
In modern mathematics, both the theory of proof and the derivation of theorems from axioms bear an unquestioned importance. The necessary skills behind these methods, however, are frequently underdeveloped. This book counters that neglect with a rigorous introduction that is simple enough in presentation and context to permit relatively easy comprehension. It comprises the sentential theory of inference, inference with universal quantifiers, and applications of the theory of inference developed to the elementary theory of commutative groups. Throughout the book, the authors emphasize the pervasive and important problem of translating English sentences into logical or mathematical symbolism. Their clear and coherent style of writing ensures that this work may be used by students in a wide range of ages and abilities.
1. Symbolizing Sentences 1.1 Sentences 1.2 Sentential Connectives 1.3 The Form of Molecular Sentences 1.4 Symbolizing Sentences 1.5 The Sentential Connectives and Their Symbols--Or; Not; If . . . then . . . 1.6 Grouping and Parentheses. The Negation of a Molecular Sentence 1.7 Elimination of Some Parentheses 1.8 Summary2. Logical Inference 2.1 Introduction 2.2 Rules of Inference and Proof Modus Ponendo Ponens Proofs Two-Step Proofs Double Negation Modus Tollendo Tollens More on Negation Adjunction and Simplification Disjunctions as Premises Modus Tollendo Ponens 2.3 Sentential Derivation 2.4 More About Parentheses 2.5 Further Rules of Inference Law of Addition Law of Hypothetica Syllogism Law of Disjunctive Syllogism Law of Disjunctive Simplification Commutative Laws De Morgan's Laws 2.6 Biconditional Sentences 2.7 Summary of Rules of Inference. Table of Rules of Inference3. Truth and Validity 3.1 Introduction 3.2 Truth Value and Truth-Functional Connectives Conjunction Negation Disjunction Conditional Sentences Equivalence: Biconditional Sentences 3.3 Diagrams of Truth Value 3.4 Invalid Conclusions 3.5 Conditional Proof 3.6 Consistency 3.7 Indirect Proof 3.8Summary4. Truth Tables 4.1 Truth Tables 4.2 Tautologies 4.3 Tautological Implication and Tautological Equivalence 4.4 Summary5. Terms, Predicates, and Universal Quantifiers 5.1 Introduction 5.2 Terms 5.3 Predicates 5.4 Common Nouns as Predicates 5.5 Atomic Formulas and Variables 5.6 Universal Quantifiers 5.7 Two Standard Forms6. Universal Specification and Laws of Identity 6.1 One Quantifier 6.2 Two or More Quantifiers 6.3 Logic of Identity 6.4 Truths of Logic7. A Simple Mathematical System: Axioms for Addition 7.1 Commutative Axiom 7.2 Associative Axiom 7.3 Axiom for Zero 7.4 Axiom for Negative Numbers8. Universal Generalization 8.1 Theorems with Variables 8.2 Theorems with Universal QuantifiersIndex
Erscheint lt. Verlag | 30.4.2012 |
---|---|
Reihe/Serie | Dover Books on Mathematics |
Sprache | englisch |
Maße | 140 x 140 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre |
Schlagworte | Argument • Argumentation • Axiom • commutative groups • double negation • Education • Formal Logic • fun math • Gentzen • inference • Informal Logic • Logic • Math • Mathematics • modern math • Modus Ponens • modus tollens • Natural deduction • natural language logic • Nonfiction • Notation • Philosophy • popular math • Predicate Calculus • proofs • Reference • sentential theory of inference • syllogism • syllogistic logic • symbolic logic • Theorems • Truth • universal generalization • universal quantifiers |
ISBN-10 | 0-486-15094-1 / 0486150941 |
ISBN-13 | 978-0-486-15094-9 / 9780486150949 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich