Equations Involving Malliavin Calculus Operators (eBook)

Applications and Numerical Approximation
eBook Download: PDF
2017 | 1st ed. 2017
X, 132 Seiten
Springer International Publishing (Verlag)
978-3-319-65678-6 (ISBN)

Lese- und Medienproben

Equations Involving Malliavin Calculus Operators - Tijana Levajković, Hermann Mena
Systemvoraussetzungen
58,84 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides a comprehensive and unified introduction to stochastic differential equations and related optimal control problems. The material is new and the presentation is reader-friendly. A major contribution of the book is the development of generalized Malliavin calculus in the framework of white noise analysis, based on chaos expansion representation of stochastic processes and its application for solving several classes of stochastic differential equations with singular data involving the main operators of Malliavin calculus. In addition, applications in optimal control and numerical approximations are discussed. 

The book is divided into four chapters. The first, entitled White Noise Analysis and Chaos Expansions, includes notation and provides the reader with the theoretical background needed to understand the subsequent chapters. In particular, we introduce spaces of random variables and stochastic processes, and consider processes that have finite variance on classical and fractional Gaussian white noise probability spaces. We also present processes with infinite variance, particularly Kondratiev stochastic distributions. We introduce the Wick and ordinary multiplication of the processes and state where these operations are well defined.

In Chapter 2, Generalized Operators of Malliavin Calculus, the Malliavin derivative operator D, the Skorokhod integral ? and the Ornstein-Uhlenbeck operator R are introduced in terms of chaos expansions. The main properties of the operators, which are known in the literature for the square integrable processes, are proven using the chaos expansion approach and extended for generalized and test stochastic processes. Moreover, we discuss fractional versions of these operators. 

Chapter 3, Equations involving Malliavin Calculus operators, is devoted to the study of several types of stochastic differential equations that involve the operators of Malliavin calculus, introduced in the previous chapter. In particular, we describe the range of the operators D, ? and R.

Finally, in Chapter 4, Applications and Numerical Approximations are discussed.  Specifically, we consider the stochastic linear quadratic optimal control problem with different forms of noise disturbances, operator differential algebraic equations arising in fluid dynamics, stationary equations and fractional versions of the equations studied - applications never covered in the extant literature. Moreover, numerical validations of the method are provided for specific problems.



Tijana Levajkovi? is currently a postdoctoral researcher at the at the University of Innsbruck, Faculty of Mathematics, Computer Science and Physics, Department of Mathematics. Her main research interests are in the fields of functional and stochastic analysis, particularly in infinite dimensional stochastic analysis, white noise analysis, Maliavin calculus, generalized stochastic processes, stochastic partial differential equations, algebras of generalized functions and optimal control.

Hermann Mena is professor at Yachay Tech, Ecuador. He also has an affiliation at the Department of Mathematics of Univeristy of Innsbruck, Austria. His research interests include applied mathematics, numerical analysis and optimal control. Particularly, deterministic and stochastic optimal control theory, numerical methods for optimal control problems and uncertainty quantification.

Tijana Levajković is currently a postdoctoral researcher at the at the Department of Mathematics, University of Innsbruck. Her main research interests are in the fields of functional and stochastic analysis, particularly in infinite dimensional stochastic analysis, white noise analysis, Maliavin calculus, generalized stochastic processes, stochastic partial differential equations, algebras of generalized functions and optimal control. Hermann Mena is professor at Yachay Tech, Ecuador. He also has an affiliation at the Department of Mathematics of Univeristy of Innsbruck, Austria. His research interests include applied mathematics, numerical analysis and optimal control. Particularly, deterministic and stochastic optimal control theory, numerical methods for optimal control problems and uncertainty quantification.

1 White Noise Analysis and Chaos Expansions: 1.1   Introduction.- 1.3  Deterministic background.- 1.2   Spaces of random variables.- 1.4 Stochastic processes.- 1.5 Operators.- References.- 2 Generalized Operators of Malliavin Calculus: 2.1 Introduction.- 2.1  The Malliavin derivative.- 2.2   The Skorokhod integral.- 2.3   The Ornstein-Uhlenbeck operator.- 2.4 Properties of the Malliavin operators.- 2.5 Fractional operators of the Malliavin calculus.- References.- 3 Equations involving Mallivin Calculus Operators: 3.1  Introduction.- 3.2 Equations with the Ornstein-Uhlenbeck operator.- 3.3  First order equation with the Malliavin derivative operator.- 3.4  Nonhomogeneous equation with the Malliavin derivative operator.- 3.5 Wick-type equations involving the Malliavin derivative.- 3.6 Integral equation.- References.- 4 Applications and Numerical Approximation: 4.1 Introduction.- 4.1  A stochastic optimal control problem.- 4.3 Operator differential algebraic equations.- 4.4 Stationary equations.- 4.5 A fractional optimal control problem.- 4.6 Numerical approximation.- References.

Erscheint lt. Verlag 31.8.2017
Reihe/Serie SpringerBriefs in Mathematics
SpringerBriefs in Mathematics
Zusatzinfo X, 132 p. 7 illus., 6 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte chaos expansion • generalized stochastic processes • Malliavin operators • operator differential algebraic equations • Partial differential equations • Stochastic differential equations • stochastic optimal control problems • Stochastic Processes • White Noise Analysis
ISBN-10 3-319-65678-3 / 3319656783
ISBN-13 978-3-319-65678-6 / 9783319656786
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich