Machine Learning for Data Streams - Albert Bifet, Ricard Gavaldà, Geoff Holmes, Bernhard Pfahringer

Machine Learning for Data Streams

with Practical Examples in MOA
Buch | Hardcover
288 Seiten
2018
MIT Press (Verlag)
978-0-262-03779-2 (ISBN)
64,80 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework.

Today many information sources-including sensor networks, financial markets, social networks, and healthcare monitoring-are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations.

The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.

Albert Bifet is Professor of Computer Science at Telecom ParisTech. Ricard Gavalda is Professor of Computer Science at the Politecnica de Catalunya, Barcelona. Geoff Holmes is Professor and Dean of Computing at the University of Waikato in Hamilton, New Zealand. Bernhard Pfahringer is Professor of Computer Science at the University of Auckland, New Zealand.

Erscheinungsdatum
Reihe/Serie Adaptive Computation and Machine Learning series
Zusatzinfo 21 color illus., 29 b&w illus.
Sprache englisch
Maße 178 x 229 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 0-262-03779-3 / 0262037793
ISBN-13 978-0-262-03779-2 / 9780262037792
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90