Topology, Calculus and Approximation
Springer London Ltd (Verlag)
978-1-4471-7315-1 (ISBN)
The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations.
Students of both pure and applied mathematics, as well as physics and engineering should find this textbook useful. Only basic results of one-variable calculus and linear algebra are used, and simple yet pertinent examples and exercises illustrate the usefulness of most theorems. Many of these examples are new or difficult to locate in the literature, and so the original sources of most notions and results are given to help readers understand the development of the field.
Vilmos Komornik has studied in Budapest, Hungary, and has taught in Hungary and France for nearly 40 years. His main research fields are control theory of partial differential equations and combinatorial number theory. He has made a number of contributions to the theory of J.L. Lions on exact controllability and stabilization and has co-authored several papers on expansions in noninteger bases with P. Erdős. He is an external member of the Hungarian Academy of Sciences.
Part 1. Topology.- Chapter 1. Metric spaces.- Chapter 2. Topological spaces.- Chapter 3. Normed spaces.- Part 2. Differential calculus.- Chapter 4. The Derivative.- Chapter 5. Higher-order derivatives.- Chapter 6. Ordinary differential equations.- Chapter 7. Implicit functions and their applications.- Part 3. Approximation methods.- Chapter 8. Interpolation.- Chapter 9. Orthogonal polynomials.- Chapter 10. Numerical integration.- Chapter 11. Finding roots.- Chapter 12. Numerical solution of differential equations.
Erscheinungsdatum | 21.04.2017 |
---|---|
Reihe/Serie | Springer Undergraduate Mathematics Series | Springer Undergraduate Mathematics Series |
Zusatzinfo | 1 Illustrations, color; 63 Illustrations, black and white; XIV, 382 p. 64 illus., 1 illus. in color. |
Verlagsort | England |
Sprache | englisch |
Original-Titel | Précis d'analyse réelle - Topologie - Calcul différentiel - Méthodes d'approximation, vol - 1 |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Schlagworte | Calculus • Differential Equations • implicit functions • Interpolation • Metric Space • .NET My Services • .NET Remoting • Newton's method • normed space • Numerical Integration • orthogonal polynomials • Runge-Kutta Method • Sturm sequences • Topology |
ISBN-10 | 1-4471-7315-5 / 1447173155 |
ISBN-13 | 978-1-4471-7315-1 / 9781447173151 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich