Lattice Theory: Special Topics and Applications (eBook)
XV, 616 Seiten
Springer International Publishing (Verlag)
978-3-319-44236-5 (ISBN)
George Grätzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Grätzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person.
So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, in two volumes, written by a distinguished group of experts, to cover some of the vast areas not in Foundation.
This second volume is divided into ten chapters contributed by K. Adaricheva, N. Caspard, R. Freese, P. Jipsen, J.B. Nation, N. Reading, H. Rose, L. Santocanale, and F. Wehrung.
George Grätzer, Member of the Canadian Academy of Sciences and Foreign Member of the Hungarian Academy of Sciences, is the author of 26 books in five languages and about 270 articles, most of them on his research in lattice theory.
Friedrich Wehrung is professor at the University of Caen and an associate editor for Algebra Universalis, a mathematical journal devoted to universal algebra and lattice theory. He is the author of numerous publications in the field and wrote an appendix to the second edition of Grätzer's General Lattice Theory.
George Grätzer, Member of the Canadian Academy of Sciences and Foreign Member of the Hungarian Academy of Sciences, is the author of 26 books in five languages and about 270 articles, most of them on his research in lattice theory.Friedrich Wehrung is professor at the University of Caen and an associate editor for Algebra Universalis, a mathematical journal devoted to universal algebra and lattice theory. He is the author of numerous publications in the field and wrote an appendix to the second edition of Grätzer's General Lattice Theory.
Varieties of Lattices.- Free and Finitely Presented Lattices.- Classes of Semidistributive Lattices.- Lattices of Algebraic Subsets and Implicational Classes.- Convex Geometries.- Bases of Closure Systems.- Permutohedra and Associahedra.- Generalizations of the Permutohedron.- Lattice Theory of the Poset of Regions.- Finite Coxeter Groups and the Weak Order.
Erscheint lt. Verlag | 8.10.2016 |
---|---|
Zusatzinfo | XV, 616 p. 136 illus. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Technik | |
Schlagworte | combinatorics • congruence lattice • finite lattice • lattice theory • Topology |
ISBN-10 | 3-319-44236-8 / 3319442368 |
ISBN-13 | 978-3-319-44236-5 / 9783319442365 |
Haben Sie eine Frage zum Produkt? |
Größe: 8,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich