Introduction to Bayesian Statistics (eBook)

eBook Download: PDF
2016 | 3. Auflage
John Wiley & Sons (Verlag)
978-1-118-59315-8 (ISBN)

Lese- und Medienproben

Introduction to Bayesian Statistics - William M. Bolstad, James M. Curran
Systemvoraussetzungen
125,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
"...this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods."

There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features:

* Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior

* The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods

* Exercises throughout the book that have been updated to reflect new applications and the latest software applications

* Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website

Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.

WILLIAM M. BOLSTAD, PhD, is a retired Senior Lecturer in the Department of Statistics at The University of Waikato, New Zealand. Dr. Bolstad's research interests include Bayesian statistics, MCMC methods, recursive estimation techniques, multiprocess dynamic time series models, and forecasting. He is author of Understanding Computational Bayesian Statistics, also published by Wiley. JAMES M. CURRAN is a Professor of Statistics in the Department of Statistics at the University of Auckland, New Zealand. Professor Curran's research interests include the statistical interpretation of forensic evidence, statistical computing, experimental design, and Bayesian statistics. He is the author of two other books including Introduction to Data Analysis with R for Forensic Scientists, published by Taylor and Francis through its CRC brand.

Erscheint lt. Verlag 23.8.2016
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte applied statistical analysis • Bayesian analysis • Bayesian Approaches • Bayesian inference • Bayesian Methods • Bayessches Verfahren • Bayes-Verfahren • binomial proportions • Discrete Random Variables • Jeffreys priors • join conjugate prior • Markov Chain Monte Carlo Methods • normal means • Poisson • robust Bayesian methods • scientific data gathering • Simple Linear Regression • Spezialthemen Statistik • Statistics • Statistics Special Topics • Statistics - Text & Reference • Statistik • Statistik / Lehr- u. Nachschlagewerke
ISBN-10 1-118-59315-4 / 1118593154
ISBN-13 978-1-118-59315-8 / 9781118593158
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich