Matrix Analysis for Statistics (eBook)
552 Seiten
John Wiley & Sons (Verlag)
978-1-119-09246-9 (ISBN)
Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms.
An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features:
* New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors
* Additional problems and chapter-end practice exercises at the end of each chapter
* Extensive examples that are familiar and easy to understand
* Self-contained chapters for flexibility in topic choice
* Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices
Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics.
James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott's research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.
James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott's research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.
Erscheint lt. Verlag | 31.5.2016 |
---|---|
Reihe/Serie | Wiley Series in Probability and Statistics | Wiley Series in Probability and Statistics |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Algebra • Mathematics • Mathematik • Spezialthemen Statistik • Statistics • Statistics Special Topics • Statistics - Text & Reference • Statistik • Statistik / Lehr- u. Nachschlagewerke |
ISBN-10 | 1-119-09246-9 / 1119092469 |
ISBN-13 | 978-1-119-09246-9 / 9781119092469 |
Haben Sie eine Frage zum Produkt? |
Größe: 62,5 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich