Solving Large Scale Learning Tasks. Challenges and Algorithms -

Solving Large Scale Learning Tasks. Challenges and Algorithms

Essays Dedicated to Katharina Morik on the Occasion of Her 60th Birthday
Buch | Softcover
XIV, 387 Seiten
2016 | 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-41705-9 (ISBN)
53,49 inkl. MwSt

In celebration of Prof. Morik's 60th birthday, this Festschrift covers research areas that Prof. Morik worked in and presents various researchers with whom she collaborated.

The 23 refereed articles in this Festschrift volume provide challenges and solutions from theoreticians and practitioners on data preprocessing, modeling, learning, and evaluation. Topics include data-mining and machine-learning algorithms, feature selection and feature generation, optimization as well as efficiency of energy and communication.

Online Social Networks Event Detection.- Detecting Events in Online Social Networks: Definitions, Trends and Challenges.- Why do we need data privacy.- Sharing Data with Guaranteed Privacy.- Distributed Support Vector Machines.- Big Data Classification - Aspects on Many Features.- Knowledge Discovery from Complex High Dimensional Data.- Local Pattern Detection in Attributed Graphs.- Advances in Exploratory Pattern Analytics on Ubiquitous Data and Social Media.- Understanding Human Mobility with Big Data.- On Event Detection from Spatial Time series for Urban Traffic Applications.- Compressible Reparametrization of Time-Variant Linear Dynamical Systems.- Detection of Local Intensity Changes in Grayscale Images with Robust Methods for Time-Series Analysis.- SCHEP - A Geometric Quality Measure for Regression Rule Sets, Gauging Ranking Consistency Throughout the Real-Valued Target Space.- Bayesian Ordinal Aggregation of Peer Assessments: A Case Study on KDD 2015.- Collaborative on linelearning of an action model.- Ontology-based Classification - Application of Machine Learning Concepts without Learning.- Deep Distant Supervision: Learning Statistical Relational Models for Weak Supervision in Natural Language Extraction.- Supervised Extraction of Usage Patterns in Different Document Representations.- Data-Driven Analyses of Electronic Text Books.- k-Morik: Mining Patterns to Classify Cartified Images of Katharina.

Erscheinungsdatum
Reihe/Serie Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science
Zusatzinfo XIV, 387 p. 73 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Netzwerke
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Algorithm analysis and problem complexity • artificial intelligence (incl. robotics) • attributed graph mining • Big Data Analytics • classification • Computer Communication Networks • Computer Science • Database Management • data mining and knowledge discovery • Distributed data mining • Evaluation • event detection • High-Performance Computing • information systems applications (incl. internet) • Markov process • mining social media • mobility data mining • Ontology • single and multiagent learning • Social Media • social network analysis • spatio-temporal analysis • supporting teachers • Support Vector Machines • User Understanding • Validation • wireless sensor networks
ISBN-10 3-319-41705-3 / 3319417053
ISBN-13 978-3-319-41705-9 / 9783319417059
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90