Calabi-Yau Varieties: Arithmetic, Geometry and Physics -

Calabi-Yau Varieties: Arithmetic, Geometry and Physics

Lecture Notes on Concentrated Graduate Courses
Buch | Hardcover
547 Seiten
2015 | 1st ed. 2015
Springer-Verlag New York Inc.
978-1-4939-2829-3 (ISBN)
149,79 inkl. MwSt
This volume presents a lively introduction to the rapidly developing and vast research areas surrounding Calabi–Yau varieties and string theory. With its coverage of the various perspectives of a wide area of topics such as Hodge theory, Gross–Siebert program, moduli problems, toric approach, and arithmetic aspects, the book gives a comprehensive overview of the current streams of mathematical research in the area.

The contributions in this book are based on lectures that took place during workshops with the following thematic titles: “Modular Forms Around String Theory,” “Enumerative Geometry and Calabi–Yau Varieties,” “Physics Around Mirror Symmetry,” “Hodge Theory in String Theory.”  The book is ideal for graduate students and researchers learning about Calabi–Yau varieties as well as physics students and string theorists who wish to learn the mathematics behind these varieties.

The Geometry and Moduli of K3 Surfaces (A. Harder, A. Thompson).- Picard Ranks of K3 Surfaces of BHK Type (T. Kelly).- Reflexive Polytopes and Lattice-Polarized K3 Surfaces (U. Whitcher).- An Introduction to Hodge Theory (S.A. Filippini, H. Ruddat, A. Thompson).- Introduction to Nonabelian Hodge Theory (A. Garcia-Raboso, S. Rayan).- Algebraic and Arithmetic Properties of Period Maps (M. Kerr).- Mirror Symmetry in Physics (C. Quigley).- Introduction to Gromov–Witten Theory (S. Rose).- Introduction to Donaldson–Thomas and Stable Pair Invariants (M. van Garrel).- Donaldson–Thomas Invariants and Wall-Crossing Formulas (Y. Zhu).- Enumerative Aspects of the Gross–Siebert Program (M. van Garrel, D.P. Overholser, H. Ruddat).- Introduction to Modular Forms (S. Rose).- Lectures on Holomorphic Anomaly Equations (A. Kanazawa, J. Zhou).- Polynomial Structure of Topological Partition Functions (J. Zhou).- Introduction to Arithmetic Mirror Symmetry (A. Perunicic).

Reihe/Serie Fields Institute Monographs ; 34
Zusatzinfo 12 Illustrations, color; 59 Illustrations, black and white; X, 547 p. 71 illus., 12 illus. in color.
Verlagsort New York
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Geometrie / Topologie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Donaldson–Thomas invariants • Gromov–Witten theory • Gross–Siebert program • Hodge Theory • Mathematik • mirror symmetry • moduli problem • String Theory • toric approach
ISBN-10 1-4939-2829-5 / 1493928295
ISBN-13 978-1-4939-2829-3 / 9781493928293
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich