Sets: Naive, Axiomatic and Applied -  D. van Dalen,  H. C. Doets,  H. De Swart

Sets: Naive, Axiomatic and Applied (eBook)

A Basic Compendium with Exercises for Use in Set Theory for Non Logicians, Working and Teaching Mathematicians and Students
eBook Download: PDF
2014 | 1. Auflage
360 Seiten
Elsevier Science (Verlag)
978-1-4831-5039-0 (ISBN)
Systemvoraussetzungen
54,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Sets: Naïve, Axiomatic and Applied is a basic compendium on naïve, axiomatic, and applied set theory and covers topics ranging from Boolean operations to union, intersection, and relative complement as well as the reflection principle, measurable cardinals, and models of set theory. Applications of the axiom of choice are also discussed, along with infinite games and the axiom of determinateness. Comprised of three chapters, this volume begins with an overview of naïve set theory and some important sets and notations. The equality of sets, subsets, and ordered pairs are considered, together with equivalence relations and real numbers. The next chapter is devoted to axiomatic set theory and discusses the axiom of regularity, induction and recursion, and ordinal and cardinal numbers. In the final chapter, applications of set theory are reviewed, paying particular attention to filters, Boolean algebra, and inductive definitions together with trees and the Borel hierarchy. This book is intended for non-logicians, students, and working and teaching mathematicians.
Sets: Naive, Axiomatic and Applied is a basic compendium on naive, axiomatic, and applied set theory and covers topics ranging from Boolean operations to union, intersection, and relative complement as well as the reflection principle, measurable cardinals, and models of set theory. Applications of the axiom of choice are also discussed, along with infinite games and the axiom of determinateness. Comprised of three chapters, this volume begins with an overview of naive set theory and some important sets and notations. The equality of sets, subsets, and ordered pairs are considered, together with equivalence relations and real numbers. The next chapter is devoted to axiomatic set theory and discusses the axiom of regularity, induction and recursion, and ordinal and cardinal numbers. In the final chapter, applications of set theory are reviewed, paying particular attention to filters, Boolean algebra, and inductive definitions together with trees and the Borel hierarchy. This book is intended for non-logicians, students, and working and teaching mathematicians.

Front Cover 1
Sets: Naïve, Axiomatic and Applied 4
Copyright Page 5
Table of Contents 6
Preface 10
Acknowledgements 14
Introduction 16
Chapter 1. Naive Set Theory 20
1. Some important sets and notations 20
2. Equality of sets 22
3. Subsets 23
4. The Naive Comprehension principle and the empty set 25
5. Union, intersection and relative complement Complement, de Morgan's laws 28
6. Power set 37
7. Unions and intersections of families 40
8. Ordered pairs 48
9. Cartesian product 51
10. Relations 55
11. Equivalence relations 60
12. Real numbers 70
13. Functions (mappings) 75
14. Orderings 97
15. Equivalence (cardinality) 111
16. Finite and infinite 128
17. Denumerable sets 135
18. Uncountable sets 146
19. The paradoxes 151
20. The set theory of Zermelo-Fraenkel (ZF) 155
21. Peano's arithmetic 167
Chapter 2. Axiomatic Set Theory 171
1. The axiom of regularity 171
2. Induction and Recursion 175
3. Ordinal numbers 184
4. The cumulative hierarchy 187
5. Ordinal arithmetic 193
6. Normal operations 199
7. The reflection principle 206
8. Initial numbers 209
9. The axiom of choice 213
10. Cardinal numbers 223
11. Models 235
12. Measurable cardinals 248
Chapter 3. Applications 258
1. Filters 258
2. Boolean algebra 261
3. Order types 272
4. Inductive definitions 281
5. Applications of the axiom of choice 287
6. The Borel hierarchy 294
7. Trees 316
8. The axiom, of Determinateness (AD) 332
Appendix 342
Symbols 347
Literature 350
Index 352
Other Titles in the Series 362

Erscheint lt. Verlag 9.5.2014
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Technik
ISBN-10 1-4831-5039-9 / 1483150399
ISBN-13 978-1-4831-5039-0 / 9781483150390
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 20,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
16,99
Grundlagen - Methoden - Anwendungen

von André Krischke; Helge Röpcke

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
34,99