Handbook of Set-Theoretic Topology (eBook)
1282 Seiten
Elsevier Science (Verlag)
978-1-4832-9515-2 (ISBN)
This Handbook is an introduction to set-theoretic topology for students in the field and for researchers in other areas for whom results in set-theoretic topology may be relevant. The aim of the editors has been to make it as self-contained as possible without repeating material which can easily be found in standard texts. The Handbook contains detailed proofs of core results, and references to the literature for peripheral results where space was insufficient. Included are many open problems of current interest.In general, the articles may be read in any order. In a few cases they occur in pairs, with the first one giving an elementary treatment of a subject and the second one more advanced results. These pairs are: Hodel and Juhasz on cardinal functions; Roitman and Abraham-Todorčević on S- and L-spaces; Weiss and Baumgartner on versions of Martin's axiom; and Vaughan and Stephenson on compactness properties.
Front Cover 1
Handbook of Set-Theoretic Topology 4
Copyright
5
Foreword 6
Table of Contents 8
CHAPTER 1. Cardinal Functions I 10
Introduction 12
1. Notation and definitions 14
2. Combinatorial principles 16
3. Definitions of cardinal functions and elementary inequalities 19
4. Bounds on the cardinality of X 26
5. Bounds using spread 31
6. Bounds using cellularity and
33
7. Cardinal functions on compact spaces 34
8. Cardinal functions on metrizable spaces 41
9. Bounds on the number of compact sets in X bounds using extent
10. Bounds on the number of continuous, real-valued functions on X 48
11. Density and cellularity of product spaces 50
12. Achieving cellularity and spread 54
13. The cardinal number o(X) and related results 56
14. Examples 59
15. Summary of definitions and inequalities 62
References 66
Chapter 2. Cardinal functions
72
Introduction 74
1. The sharpness of bounds on the cardinality of X 74
2. The sharpness of bounds using spread 83
3. On products 89
4. Subspaces of compact spaces 91
5. Subspaces of Lindelöf spaces 98
6. Omitting cardinals 102
7. The character of w1 in first countable
107
8. On sup
114
References 117
Chapter 3. The integers and topology 120
1. Introduction 122
2. Convention and notation 123
3. Six cardinals 124
4. The cardinal
133
5. Consistency results 136
6. Sequential compactness and countable compactness 137
7. Spaces from C*-chains 142
8. Separable metrizable spaces 145
9. G& 's and
157
10. Covering properties and the Michael line 159
11. Spaces from almost disjoint families 162
12. Weakenings of normality 164
13. Recursive constructions of topologies 168
References 173
Chapter 4. Box
178
Introduction 180
1. Preliminaries and elementary results 180
2. Paracompact spaces 186
3. The nabla lemma (for countable products
190
4. Large compact factors 193
5. CH and lighter axioms 197
6. In forcing extensions 202
References 207
Chapter 5. Special subsets of the real
210
1. Introduction 212
2. Luzin and Sierpinski sets 213
3. Concentrated sets and sets of strong measure zero 216
4. s-sets
219
5. Universal measure zero sets, perfectly meager sets, ., . and s0-sets, and Hausdorff
221
6. Order types of the real line 227
7. Unions 228
8. Products 229
9. Continuous and homeomorphic images and C" and C'-sets 231
10. Implications and definitions 236
References 237
Chapter 6. Trees and linearly ordered sets, 244
Introduction 246
1. Preliminaries 246
2. Trees 248
3. Linearly ordered sets 256
4. A class of
262
5. Aronszajn trees and lines 265
6. Suslin trees and lines 275
7. Aronszajn and Suslin trees of greater heights 282
8. Kurepa trees and lines 285
9. Nonspecial trees 293
References 298
Chapter 7. Basic S and
304
1. Introduction 306
2. Prerequisites 308
3. Canonical S- and L-spaces 310
4. CH constructions 314
5. Applications 318
6. Destroying S and L using MA 4+
323
7. Two theorems about S-spaces 328
References 333
Chapter
336
Introduction 338
1. Consistency of first-countable S-spaces 339
2. Martin's Axiom and first-countable L-spaces 344
3. Some methods for getting models of Martin's Axiom 344
4. S-spaces with strong combinatorial properties 347
5. 2-complicated spaces 348
6. L-spaces and Martin's Axiom 353
References 354
Chapter 9. Covering
356
1. Introduction 358
2. Characterizations of paracompact spaces 360
3. Definitions and characterizations of other covering properties 369
4. Relationships among covering properties 379
5. Mappings and covering properties 393
6. Products 398
7. Subspaces and sums 411
8. With locally compact or locally connected 414
Chapter 9. With countably compact or pseudocompact 422
References 425
Chapter 10. Generalized metric
432
Introduction 434
1. Review of basic metrization theory
435
2. Gd-diagonals and submetrizable
437
3. Simultaneous generalizations of metric
444
4. Networks:
454
5. Stratifiable and related
462
6. Base of
477
7. Spaces with a point-countable
481
8. Quasi-developable
486
9. Semi-metrizable and symmetrizable spaces 489
10. Quasi-metrizable and related spaces 497
11. k-networks:
502
References 506
Index 510
Chapter 11. An introduction to
512
Introduction 514
0. Preliminaries 515
1. The spaces ßw
517
2. The spaces ßw and ßw/w
536
3. Partial orderings on
548
4. Weak P-points and other points in
557
5. Remarks 571
Open problems 572
References 573
Chapter 12. Countably compact and
578
1. Introduction 580
2. Basic properties and examples 580
3. When is a product of countably compact spaces countably compact? 585
4. Products and r-limits 593
5. When is a countably compact or compact space sequentially compact? 598
6. When is a countably compact space compact? 602
7. Notes 607
References 609
Chapter 13. Initially k-compact and related
612
1. Introduction 614
2. Initial k- and [., k]-compactness
615
3. Basic properties of initially k-compact
617
4. Examples of initially
622
5. Products of initially
628
6. Further examples, product theorems, and open problems 632
7. Notes 638
References 639
Chapter 14. The theory of nonmetrizable
642
1. Introduction 644
2. Cardinal invariants, covering and separation properties 646
3. Examples 651
4. Martin's Axiom and Type I spaces 664
5. The structure of
671
6. A variety of
677
References 691
Chapter 15. Normality versus collectionwise
694
Introduction 696
I.
697
II.
716
III.
730
IV. Historical
732
References 737
Chapter
742
1. Introduction, notations, definitions 744
2. Nyikos' theorem 746
3. Strongly compact cardinals, random reals, Con(PMEA) 748
4. Summary and an alternative proof 753
5. Normal, not collectionwise normal spaces 756
6. Navy's space 759
7. The CH example 762
8. Large cardinals
766
References 768
Chapter 17. Dowker
770
1. Dowker's theorem 772
2. Classes of spaces which cannot be Dowker 774
3. Some Dowker spaces 776
4. Related topics 782
References 787
Chapter 18. Products of normal spaces, 790
1. Introduction 792
2. Products of normal spaces need not be normal 793
3. Products with a compact factor 799
4. Products with a metric factor 809
5. Hereditarily normal products 820
6. Infinite products 822
7.
828
8. Some open problems 830
References 832
Chapter 19. Versions of
836
0. Introducing
838
1. The topology of
839
2. MA
843
3. Partial
846
4. The influence
853
5. MA for restricted kinds of
856
6. Extending a little extending a lot
7.
867
8. Axiomatic solidarity 873
9. Would you like some proof? 879
References 893
Chapter 20. Random and Cohen
896
0. Introduction 898
1. Properties of the meagre and null ideals 898
2. Cardinality questions 908
3. Forcing 909
4. Conclusion 920
References 920
Chapter 21. Applications
922
0.
924
1. Stationary sets, elementary substructures, and forcing 925
2. How to recognize a proper partial ordering 930
3. The Proper Forcing Axiom. Examples and counterexamples 933
4. Gaps and the cardinal-collapsing trick 939
5. TOP and the closed-unbounded-set trick 944
6. The real numbers and the Continuum-Hypothesis trick 950
7. Trees, . and
957
8. Reflection principles and PFA+ 962
9. Concluding remarks 965
References 967
Chapter 22. Borel measures, 970
1. Introduction 972
2. Conventions and definitions 973
3. Restrictions and extensions of Borel measures 975
4. Set-theoretic preliminaries 978
5. Some examples 982
6. Regularity and t-additivity
991
7. Completeness properties for finite Borel measures 994
8. Completeness properties for 2-valued Borel measures 1001
9. Completeness properties of small spaces 1004
10. Completeness and covering properties 1007
11. Radon spaces 1013
12. Regularity of s-finite Borel
1023
13. s-finiteness of diffused, outer
1029
14. Baire measures 1038
15. Products of real lines and Radon measures 1045
References 1049
Chapter 23. Banach spaces and
1054
Introduction 1056
0. Preliminaries 1057
1. Rosenthal's theorem for isomorphic embedding of
1066
2. Calibers, independent families of compact spaces K and universal isomorphic embeddings of l1a into
1075
3. Isomorphic embeddings of l1a in Banach spaces X and independent families on the dual
1080
4. Large subsets of L8(µ) far apart in L1-norm and Pelczynski's
1084
5. The Kunen-Haydon-Talagrand example 1095
6. Corson-compact spaces and subclasses—Applications to Banach spaces 1108
7. Kunen's example of an S-space and Banach spaces 1132
8. Fixed points of contractions in weakly compact convex subsets of Banach spaces 1138
References 1147
Chapter 24. Topological
1152
1. Introduction: Seven major results 1154
2. Topological pathology (upper bounds) 1167
3. Cardinal invariants 1172
4. Measurability conditions and the group Hom(G, T ) 1181
5. Topological groups with special topological properties 1199
6. Pseudocompact topological groups 1211
7. Dense subgroups with special properties 1222
8. Products of topological groups 1229
9. Topologizing a group 1235
10. Not all homogeneous spaces are topological groups 1252
11. Concluding remarks and acknowledgements 1256
References 1259
Index 1274
Erscheint lt. Verlag | 28.6.2014 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre | |
Technik | |
ISBN-10 | 1-4832-9515-X / 148329515X |
ISBN-13 | 978-1-4832-9515-2 / 9781483295152 |
Haben Sie eine Frage zum Produkt? |
Größe: 75,6 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich