Practical Approaches to Causal Relationship Exploration
Seiten
2015
|
2015
Springer International Publishing (Verlag)
978-3-319-14432-0 (ISBN)
Springer International Publishing (Verlag)
978-3-319-14432-0 (ISBN)
This brief presents four practical methods to effectively explore causal relationships, which are often used for explanation, prediction and decision making in medicine, epidemiology, biology, economics, physics and social sciences. The first two methods apply conditional independence tests for causal discovery. The last two methods employ association rule mining for efficient causal hypothesis generation, and a partial association test and retrospective cohort study for validating the hypotheses. All four methods are innovative and effective in identifying potential causal relationships around a given target, and each has its own strength and weakness. For each method, a software tool is provided along with examples demonstrating its use. Practical Approaches to Causal Relationship Exploration is designed for researchers and practitioners working in the areas of artificial intelligence, machine learning, data mining, and biomedical research. The material also benefits advanced students interested in causal relationship discovery.
Introduction.- Local causal discovery with a simple PC algorithm.- A local causal discovery algorithm for high dimensional data.- Causal rule discovery with partial association test.- Causal rule discovery with cohort studies.- Experimental comparison and discussions.
Erscheint lt. Verlag | 25.3.2015 |
---|---|
Reihe/Serie | SpringerBriefs in Electrical and Computer Engineering |
Zusatzinfo | X, 80 p. 55 illus. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 156 g |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Bayesian networks • Causal Relationship • Cohort Study • Local causal discovery • Partial association |
ISBN-10 | 3-319-14432-4 / 3319144324 |
ISBN-13 | 978-3-319-14432-0 / 9783319144320 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Datenanalyse für Künstliche Intelligenz
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95 €
Auswertung von Daten mit pandas, NumPy und IPython
Buch | Softcover (2023)
O'Reilly (Verlag)
44,90 €