Machine Learning Techniques for Multimedia -

Machine Learning Techniques for Multimedia

Case Studies on Organization and Retrieval
Buch | Softcover
XVI, 289 Seiten
2014 | 2008
Springer Berlin (Verlag)
978-3-642-44362-6 (ISBN)
160,49 inkl. MwSt

Processing multimedia content has emerged as a key area for the application of machine learning techniques, where the objectives are to provide insight into the domain from which the data is drawn, and to organize that data and improve the performance of the processes manipulating it. Applying machine learning techniques to multimedia content involves special considerations - the data is typically of very high dimension, and the normal distinction between supervised and unsupervised techniques does not always apply.

This book provides a comprehensive coverage of the most important machine learning techniques used and their application in this domain. Arising from the EU MUSCLE network, a program that drew together multidisciplinary teams with expertise in machine learning, pattern recognition, artificial intelligence, and image, video, text and crossmedia processing, the book first introduces the machine learning principles and techniques that are applied in multimedia data processing and analysis. The second part focuses on multimedia data processing applications, with chapters examining specific machine learning issues in domains such as image retrieval, biometrics, semantic labelling, mobile devices, and mining in text and music.

This book will be suitable for practitioners, researchers and students engaged with machine learning in multimedia applications.

to Learning Principles for Multimedia Data.- to Bayesian Methods and Decision Theory.- Supervised Learning.- Unsupervised Learning and Clustering.- Dimension Reduction.- Multimedia Applications.- Online Content-Based Image Retrieval Using Active Learning.- Conservative Learning for Object Detectors.- Machine Learning Techniques for Face Analysis.- Mental Search in Image Databases: Implicit Versus Explicit Content Query.- Combining Textual and Visual Information for Semantic Labeling of Images and Videos.- Machine Learning for Semi-structured Multimedia Documents: Application to Pornographic Filtering and Thematic Categorization.- Classification and Clustering of Music for Novel Music Access Applications.

Erscheint lt. Verlag 23.9.2014
Reihe/Serie Cognitive Technologies
Zusatzinfo XVI, 289 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 474 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Office Programme Outlook
Informatik Software Entwicklung User Interfaces (HCI)
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte biometrics • classification • Clustering • Cognition • Database • Decision Theory • Dimensionsreduktion • learning • machine learning • Multimedia • pattern recognition • Performance • supervised learning • Unsupervised Learning • Video
ISBN-10 3-642-44362-1 / 3642443621
ISBN-13 978-3-642-44362-6 / 9783642443626
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90