Fitting Statistical Distributions
The Generalized Lambda Distribution and Generalized Bootstrap Methods
Seiten
2000
Chapman & Hall/CRC (Verlag)
978-1-58488-069-1 (ISBN)
Chapman & Hall/CRC (Verlag)
978-1-58488-069-1 (ISBN)
Presents the relevant results related to the Generalized Lambda Distribution, the Generalized Bootstrap, and Monte Carlo simulation. This work provides the tables, algorithms, and computer programs needed for fitting continuous probability distributions to data in a variety of circumstances - covering bivariate as well as univariate distributions.
Throughout the physical and social sciences, researchers face the challenge of fitting statistical distributions to their data. Although the study of statistical modelling has made great strides in recent years, the number and variety of distributions to choose from-all with their own formulas, tables, diagrams, and general properties-continue to create problems. For a specific application, which of the dozens of distributions should one use? What if none of them fit well?
Fitting Statistical Distributions helps answer those questions. Focusing on techniques used successfully across many fields, the authors present all of the relevant results related to the Generalized Lambda Distribution (GLD), the Generalized Bootstrap (GB), and Monte Carlo simulation (MC). They provide the tables, algorithms, and computer programs needed for fitting continuous probability distributions to data in a wide variety of circumstances-covering bivariate as well as univariate distributions, and including situations where moments do not exist.
Regardless of your specific field-physical science, social science, or statistics, practitioner or theorist-Fitting Statistical Distributions is required reading. It includes wide-ranging applications illustrating the methods in practice and offers proofs of key results for those involved in theoretical development. Without it, you may be using obsolete methods, wasting time, and risking incorrect results.
Throughout the physical and social sciences, researchers face the challenge of fitting statistical distributions to their data. Although the study of statistical modelling has made great strides in recent years, the number and variety of distributions to choose from-all with their own formulas, tables, diagrams, and general properties-continue to create problems. For a specific application, which of the dozens of distributions should one use? What if none of them fit well?
Fitting Statistical Distributions helps answer those questions. Focusing on techniques used successfully across many fields, the authors present all of the relevant results related to the Generalized Lambda Distribution (GLD), the Generalized Bootstrap (GB), and Monte Carlo simulation (MC). They provide the tables, algorithms, and computer programs needed for fitting continuous probability distributions to data in a wide variety of circumstances-covering bivariate as well as univariate distributions, and including situations where moments do not exist.
Regardless of your specific field-physical science, social science, or statistics, practitioner or theorist-Fitting Statistical Distributions is required reading. It includes wide-ranging applications illustrating the methods in practice and offers proofs of key results for those involved in theoretical development. Without it, you may be using obsolete methods, wasting time, and risking incorrect results.
Karian, Zaven A.; Dudewicz, Edward J.
The Generalized Lambda Family of Distributions. Fitting Distributions and Data with the GLD via the Method of Moments. The Extended GLD System, the EGLD: Fitting by the Method of Moments. A Percentile-Based Approach to Fitting Distributions and Data with the GLD. GLD-2: the Bivariate GLD Distribution. The Generalized Bootstrap (GB) and Monte Carlo (MC) Methods. Appendices
Erscheint lt. Verlag | 24.5.2000 |
---|---|
Zusatzinfo | 88 Tables, black and white |
Sprache | englisch |
Maße | 156 x 234 mm |
Gewicht | 1000 g |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Statistik | |
ISBN-10 | 1-58488-069-4 / 1584880694 |
ISBN-13 | 978-1-58488-069-1 / 9781584880691 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Datenanalyse für Künstliche Intelligenz
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95 €
Auswertung von Daten mit pandas, NumPy und IPython
Buch | Softcover (2023)
O'Reilly (Verlag)
44,90 €