Reliable Knowledge Discovery -

Reliable Knowledge Discovery

Buch | Softcover
310 Seiten
2014 | 2012 ed.
Springer-Verlag New York Inc.
978-1-4899-9532-2 (ISBN)
213,99 inkl. MwSt
Reliable Knowledge Discovery focuses on theory, methods, and techniques for RKDD, a new sub-field of KDD. It studies the theory and methods to assure the reliability and trustworthiness of discovered knowledge and to maintain the stability and consistency of knowledge discovery processes. RKDD has a broad spectrum of applications, especially in critical domains like medicine, finance, and military.

Reliable Knowledge Discovery also presents methods and techniques for designing robust knowledge-discovery processes. Approaches to assessing the reliability of the discovered knowledge are introduced. Particular attention is paid to methods for reliable feature selection, reliable graph discovery, reliable classification, and stream mining. Estimating the data trustworthiness is covered in this volume as well. Case studies are provided in many chapters.

Reliable Knowledge Discovery is designed for researchers and advanced-level students focused on computer science and electrical engineering as a secondary text or reference. Professionals working in this related field and KDD application developers will also find this book useful.

Transductive Reliability Estimation for Individual Classifications in Machine Learning and Data Mining.- Estimating Reliability for Assessing and Correcting Individual Streaming Predictions.- Error Bars for Polynomial Neural Networks.- Robust-Diagnostic Regression: A Prelude for Inducing Reliable Knowledge from Regression.- Reliable Graph Discovery.- Combining Version Spaces and Support Vector Machines for Reliable Classification.- Reliable Ticket Routing in Expert Networks.- Reliable Aggregation on Network Traffic for Web Based Knowledge Discovery.- Sensitivity and Generalization of SVM with Weighted and Reduced Features.- Reliable Gesture Recognition with Transductivie Confidence Machines.- Reliability in A Feature-Selection Process for Intrusion Detection.- The Impact of Sample Size and Data Quality to Classification Reliability.- A Comparative Analysis of Instance-based Penalization Techniques for Classification.- Subsequence Frequency Measurement and its Impact on Reliability of Knowledge Discovery in Single Sequences.- Improving Reliability of Unbalanced Text Mining by Reducing Performance Bias.- Formal Representation and Verification of Ontology Using State Controlled Coloured Petri Nets.- A Reliable System Platform for Group Decision Support under Uncertain Environments.- Index.

Erscheint lt. Verlag 12.4.2014
Zusatzinfo XVIII, 310 p.
Verlagsort New York
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Software Entwicklung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Applications • assessing knowledge reliability • confidence prediction • reliable classification • reliable feature selection • reliable graph discovery • Reliable knowledge discovery • reliable regression • reliable stream mining • Reliable system platform • reliable web mining • robust knowledge-discovery process
ISBN-10 1-4899-9532-3 / 1489995323
ISBN-13 978-1-4899-9532-2 / 9781489995322
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90