Algebra, Geometry and Mathematical Physics

AGMP, Mulhouse, France, October 2011
Buch | Hardcover
XVIII, 684 Seiten
2014 | 2014
Springer Berlin (Verlag)
978-3-642-55360-8 (ISBN)

Lese- und Medienproben

Algebra, Geometry and Mathematical Physics -
160,49 inkl. MwSt

This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more.

The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond.

The book benefits a broad audience of researchers and advanced students.

Part I Algebra.- Part II Geometry.- Part III Dynamical Symmetries and Conservation Laws.- Part IV Mathematical Physics and Applications.

Erscheint lt. Verlag 3.7.2014
Reihe/Serie Springer Proceedings in Mathematics & Statistics
Zusatzinfo XVIII, 684 p. 69 illus., 7 illus. in color.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 1214 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Schlagworte Algebra • Connection • conservation law • Deformation • deformation theory • Hom-algebra • Hom-algebras • Hopf algebra • Lie Theory • Quantization • quantum algebra
ISBN-10 3-642-55360-5 / 3642553605
ISBN-13 978-3-642-55360-8 / 9783642553608
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich