High-Performance Scientific Computing -

High-Performance Scientific Computing

Algorithms and Applications
Buch | Softcover
350 Seiten
2014
Springer London Ltd (Verlag)
978-1-4471-5888-2 (ISBN)
117,69 inkl. MwSt
This book presents the state of the art in parallel numerical algorithms, applications, architectures, and system software. discusses the latest issues in dense and sparse matrix computations for modern high-performance systems, multicores, manycores and GPUs, and several perspectives on the Spike family of algorithms for solving linear systems;
This book presents the state of the art in parallel numerical algorithms, applications, architectures, and system software. The book examines various solutions for issues of concurrency, scale, energy efficiency, and programmability, which are discussed in the context of a diverse range of applications. Features: includes contributions from an international selection of world-class authorities; examines parallel algorithm-architecture interaction through issues of computational capacity-based codesign and automatic restructuring of programs using compilation techniques; reviews emerging applications of numerical methods in information retrieval and data mining; discusses the latest issues in dense and sparse matrix computations for modern high-performance systems, multicores, manycores and GPUs, and several perspectives on the Spike family of algorithms for solving linear systems; presents outstanding challenges and developing technologies, and puts these in their historical context.

Parallel Numerical Computing from Illiac IV to Exascale.- Computational Capacity-Based Co-design of Computer Systems.- Measuring Computer Performance.- A Compilation Framework for the Automatic Restructuring of Pointer-Linked Data Structures.- Dense Linear Algebra on Accelerated Multicore Hardware.- The Explicit SPIKE Algorithm.- The SPIKE Factorization as Domain Decomposition Method.- Parallel Solution of Sparse Linear Systems.- Parallel Block-Jacobi SVD Methods.- Robust and Efficient Multifrontal Solver for Large Discretized PDEs.- A Preconditioned Scheme for Nonsymmetric Saddle-Point Problems.- Effect of Ordering for Iterative Solvers in Structural Mechanics Problems.- Scaling Hypre’s Multigrid Solvers to 100,000 Cores.- A Riemannian Dennis-Moré Condition.- A Jump-Start of Non-Negative Least Squares Solvers.- Fast Nonnegative Tensor Factorization with an Active-Set-Like Method.- Knowledge Discovery Using Nonnegative Tensor Factorization with Visual Analytics.

Zusatzinfo XIV, 350 p.
Verlagsort England
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte High Performance Computing • parallel linear algebra • Parallel Numerical Algorithms • Parallel Solvers • Scientific Computing
ISBN-10 1-4471-5888-1 / 1447158881
ISBN-13 978-1-4471-5888-2 / 9781447158882
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90