Interior Point Approach to Linear, Quadratic and Convex Programming - D. den Hertog

Interior Point Approach to Linear, Quadratic and Convex Programming

Algorithms and Complexity

(Autor)

Buch | Softcover
210 Seiten
2012 | Softcover reprint of the original 1st ed. 1994
Springer (Verlag)
978-94-010-4496-7 (ISBN)
53,49 inkl. MwSt
This book describes the rapidly developing field of interior point methods (IPMs). It is shown that all these methods rely on the same notion as the path-following methods: all these methods use the central path implicitly or explicitly as a reference path to go to the optimum.
This book describes the rapidly developing field of interior point methods (IPMs). An extensive analysis is given of path-following methods for linear programming, quadratic programming and convex programming. These methods, which form a subclass of interior point methods, follow the central path, which is an analytic curve defined by the problem. Relatively simple and elegant proofs for polynomiality are given. The theory is illustrated using several explicit examples. Moreover, an overview of other classes of IPMs is given. It is shown that all these methods rely on the same notion as the path-following methods: all these methods use the central path implicitly or explicitly as a reference path to go to the optimum.
For specialists in IPMs as well as those seeking an introduction to IPMs. The book is accessible to any mathematician with basic mathematical programming knowledge.

1 Introduction of IPMs.- 1.1 Prelude.- 1.2 Intermezzo: Complexity issues.- 1.3 Classifying the IPMs.- 1.4 Scope of the book.- 2 The logarithmic barrier method.- 2.1 General framework.- 2.2 Central paths for some examples.- 2.3 Linear programming.- 2.4 Convex quadratic programming.- 2.5 Smooth convex programming.- 2.6 Miscellaneous remarks.- 3 The center method.- 3.1 General framework.- 3.2 Centers for some examples.- 3.3 Linear programming.- 3.4 Smooth convex programming.- 3.5 Miscellaneous remarks.- 4 Reducing the complexity for LP.- 4.1 Approximate solutions and rank-one updates.- 4.2 Adding and deleting constraints.- 5 Discussion of other IPMs.- 5.1 Path-following methods.- 5.2 Affine scaling methods.- 5.3 Projective potential reduction methods.- 5.4 Affine potential reduction methods.- 5.5 Comparison of IPMs.- 6 Summary, conclusions and recommendations.- Appendices.- A Self-concordance proofs.- A.1 Some general composition rules.- A.2 The dual geometric programming problem.- A.3 The extended entropy programming problem.- A.4 The primal 4-programming problem.- A.5 The dual 4-programming problem.- A.6 Other smoothness conditions.- B General technical lemmas.

Reihe/Serie Mathematics and Its Applications ; 277
Mathematics and Its Applications ; 277
Zusatzinfo XII, 210 p.
Verlagsort Dordrecht
Sprache englisch
Maße 160 x 240 mm
Themenwelt Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 94-010-4496-1 / 9401044961
ISBN-13 978-94-010-4496-7 / 9789401044967
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99