Advances in Learning Classifier Systems -

Advances in Learning Classifier Systems

Third International Workshop, IWLCS 2000, Paris, France, September 15-16, 2000. Revised Papers
Buch | Softcover
VIII, 280 Seiten
2001 | 2001
Springer Berlin (Verlag)
978-3-540-42437-6 (ISBN)
53,49 inkl. MwSt
Learning classi er systems are rule-based systems that exploit evolutionary c- putation and reinforcement learning to solve di cult problems. They were - troduced in 1978 by John H. Holland, the father of genetic algorithms, and since then they have been applied to domains as diverse as autonomous robotics, trading agents, and data mining. At the Second International Workshop on Learning Classi er Systems (IWLCS 99), held July 13, 1999, in Orlando, Florida, active researchers reported on the then current state of learning classi er system research and highlighted some of the most promising research directions. The most interesting contri- tions to the meeting are included in the book Learning Classi er Systems: From Foundations to Applications, published as LNAI 1813 by Springer-Verlag. The following year, the Third International Workshop on Learning Classi er Systems (IWLCS 2000), held September 15{16 in Paris, gave participants the opportunity to discuss further advances in learning classi er systems. We have included in this volume revised and extended versions of thirteen of the papers presented at the workshop.

Theory.- An Artificial Economy of Post Production Systems.- Simple Markov Models of the Genetic Algorithm in Classifier Systems: Accuracy-Based Fitness.- Simple Markov Models of the Genetic Algorithm in Classifier Systems: Multi-step Tasks.- Probability-Enhanced Predictions in the Anticipatory Classifier System.- YACS: Combining Dynamic Programming with Generalization in Classifier Systems.- A Self-Adaptive Classifier System.- What Makes a Problem Hard for XCS?.- Applications.- Applying a Learning Classifier System to Mining Explanatory and Predictive Models from a Large Clinical Database.- Strength and Money: An LCS Approach to Increasing Returns.- Using Classifier Systems as Adaptive Expert Systems for Control.- Mining Oblique Data with XCS.- Advanced Architectures.- A Study on the Evolution of Learning Classifier Systems.- Learning Classifier Systems Meet Multiagent Environments.- The Bibliography.- A Bigger Learning Classifier Systems Bibliography.- An Algorithmic Description of XCS.

Erscheint lt. Verlag 29.8.2001
Reihe/Serie Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science
Zusatzinfo VIII, 280 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 408 g
Themenwelt Informatik Software Entwicklung User Interfaces (HCI)
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Adaptation • Algorithmic Learning • algorithms • classification • Classifier SYstems • Clustering • Data Analysis • Data Mining • Evolutionary Computing • Expert System • Genetic algorithms • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • learning • Learning classifier systems • Multiagent Learning • Rule-Based Systems
ISBN-10 3-540-42437-7 / 3540424377
ISBN-13 978-3-540-42437-6 / 9783540424376
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Aus- und Weiterbildung nach iSAQB-Standard zum Certified Professional …

von Mahbouba Gharbi; Arne Koschel; Andreas Rausch; Gernot Starke

Buch | Hardcover (2023)
dpunkt Verlag
34,90
Lean UX und Design Thinking: Teambasierte Entwicklung …

von Toni Steimle; Dieter Wallach

Buch | Hardcover (2022)
dpunkt (Verlag)
34,90
Wissensverarbeitung - Neuronale Netze

von Uwe Lämmel; Jürgen Cleve

Buch | Hardcover (2023)
Carl Hanser (Verlag)
34,99