Neural Networks and Statistical Learning

Buch | Hardcover
824 Seiten
2013 | 2014 ed.
Springer London Ltd (Verlag)
978-1-4471-5570-6 (ISBN)

Lese- und Medienproben

Neural Networks and Statistical Learning - Ke-Lin Du, M. N. S. Swamy
128,39 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Inclusive coverage of all the essential neural network applications in a statistical learning framework makes this a baseline text for students and researchers, with 25 chapters on all the major approaches that include a wealth of examples and exercises.
Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content.

Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included.

Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence,

and data mining.

Ke-Lin Du is currently the Chief Scientist at Enjoyor Inc., China. He is also an Affiliate Associate Professor in Department of Electrical and Computer Engineering at Concordia University, Canada. Prior to joining Enjoyor Inc. in 2012, he held positions with Huawei Technologies, the China Academy of Telecommunication Technology, the Chinese University of Hong Kong, the Hong Kong University of Science and Technology, and Concordia University. He has published two books and over 50 papers, and filed over 15 patents. His current research interests include signal processing, neural networks, intelligent systems, and wireless communications. He is a Senior Member of the IEEE.M.N.S. Swamy is currently a Research Professor and holder of the Concordia Tier I Research Chair Signal Processing in the Department of Electrical and Computer Engineering, Concordia University, where he was Dean of the Faculty of Engineering and Computer Science from 1977 to 1993 and the founding Chair of the EE department. He has published extensively in the areas of circuits, systems and signal processing, and co-authored five books. Professor Swamy is a Fellow of the IEEE, IET (UK) and EIC (Canada), and has received many IEEE-CAS awards, including the Guillemin-Cauer award in 1986, as well as the Education Award and the Golden Jubilee Medal, both in 2000.

Introduction.- Fundamentals of Machine Learning.- Perceptrons.- Multilayer perceptrons: architecture and error backpropagation.- Multilayer perceptrons: other learing techniques.- Hopfield networks, simulated annealing and chaotic neural networks.- Associative memory networks.- Clustering I: Basic clustering models and algorithms.- Clustering II: topics in clustering.- Radial basis function networks.- Recurrent neural networks.- Principal component analysis.- Nonnegative matrix factorization and compressed sensing.- Independent component analysis.- Discriminant analysis.- Support vector machines.- Other kernel methods.- Reinforcement learning.- Probabilistic and Bayesian networks.- Combining multiple learners: data fusion and emsemble learning.- Introduction of fuzzy sets and logic.- Neurofuzzy systems.- Neural circuits.- Pattern recognition for biometrics and bioinformatics.- Data mining.- Appenidx A. Mathematical Preliminaries.- Appendix B. Benchmarks and resources.

Zusatzinfo 68 Illustrations, color; 98 Illustrations, black and white; XXVII, 824 p. 166 illus., 68 illus. in color.
Verlagsort England
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Technik
Schlagworte Data Mining, Data Fusion and Ensemble Learning • Multilayer Perceptrons • Neural networks • pattern recognition • Statistical and Machine Learning
ISBN-10 1-4471-5570-X / 144715570X
ISBN-13 978-1-4471-5570-6 / 9781447155706
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90