High-Dimensional Covariance Estimation (eBook)

With High-Dimensional Data
eBook Download: EPUB
2013 | 1. Auflage
208 Seiten
John Wiley & Sons (Verlag)
978-1-118-57366-2 (ISBN)

Lese- und Medienproben

High-Dimensional Covariance Estimation - Mohsen Pourahmadi
Systemvoraussetzungen
86,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Methods for estimating sparse and large covariance matrices

Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning.

Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task.

High-Dimensional Covariance Estimation features chapters on:

* Data, Sparsity, and Regularization

* Regularizing the Eigenstructure

* Banding, Tapering, and Thresholding

* Covariance Matrices

* Sparse Gaussian Graphical Models

* Multivariate Regression

The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.

MOHSEN POURAHMADI, PhD, is Professor of Statistics at Texas A&M University. He is an elected member of the International Statistical Institute, a Fellow of the American Statistical Association, and a member of the American Mathematical Society. Dr. Pourahmadi is the author of Foundations of Time Series Analysis and Prediction Theory, also published by Wiley.

Preface xi

PART I MOTIVATION AND THE BASICS

1 Introduction 3

1.1 Least-Squares and Regularized Regression 4

1.2 Lasso: Survival of the Bigger 6

1.3 Thresholding the Sample Covariance Matrix 9

1.4 Sparse PCA and Regression 10

1.5 Graphical Models: Nodewise Regression 12

1.6 Cholesky Decomposition and Regression 13

1.7 The Bigger Picture: Latent Factor Models 14

1.8 Further Reading 16

2 Data, Sparsity and Regularization 21

2.1 Data Matrix: Examples 22

2.2 Shrinking the Sample Covariance Matrix 26

2.3 Distribution of the Sample Eigenvalues 29

2.4 Regularizing Covariances Like a Mean 30

2.5 The Lasso Regression 32

2.6 Lasso, Variable Selection and Prediction 36

2.7 Lasso, Degrees of Freedom and BIC 37

2.8 Some Alternatives to the Lasso Penalty 38

3 Covariance Matrices 45

3.1 Definition and Basic Properties 46

3.2 The Spectral Decomposition 49

3.3 Structured Covariance Matrices 52

3.4 Functions of a Covariance Matrix 55

3.5 PCA: The Maximum Variance Property 59

3.6 Modified Cholesky Decomposition 61

3.7 Latent Factor Models 65

3.8 GLM for Covariance Matrices 71

3.9 GLM via the Cholesky Decomposition 73

3.10 The GLM for Incomplete Longitudinal Data 76

3.11 A Data Example: Fruit Fly Mortality Rate 81

3.12 Simulating Random Correlation Matrices 85

3.13 Bayesian Analysis of Covariance Matrices 88

PART II COVARIANCE ESTIMATION: REGULARIZATION

4 Regularizing the Eigenstructure 95

4.1 Shrinking the Eigenvalues 96

4.2 Regularizing The Eigenvectors 101

4.3 A Duality between PCA and SVD 103

4.4 Implementing Sparse PCA: A Data Example 106

4.5 Sparse Singular Value Decomposition (SSVD) 108

4.6 Consistency of PCA 109

4.7 Principal Subspace Estimation 113

4.8 Further Reading 114

5 Sparse Gaussian Graphical Models 115

5.1 Covariance Selection Models: Two Examples 116

5.2 Regression Interpretation of Entries of sum¯-1
118

5.3 Penalized Likelihood and Graphical Lasso 120

5.4 Penalized Quasi-Likelihood Formulation 126

5.5 Penalizing the Cholesky Factor 127

5.6 Consistency and Sparsistency 130

5.7 Joint Graphical Models 130

5.8 Further Reading 132

6 Banding, Tapering and Thresholding 135

6.1 Banding the Sample Covariance Matrix 136

6.2 Tapering the Sample Covariance Matrix 137

6.3 Thresholding the Sample Covariance Matrix 138

6.4 Low-Rank Plus Sparse Covariance Matrices 142

6.5 Further Reading 143

7 Multivariate Regression: Accounting for Correlation
145

7.1 Multivariate Regression & LS Estimators 146

7.2 Reduced Rank Regressions (RRR) 148

7.3 Regularized Estimation of B 150

7.4 Joint Regularization of (B;) 152

7.5 Implementing MRCE: Data Examples 155

7.5.1 Intraday Electricity Prices 155

7.5.2 Predicting Asset Returns 158

7.6 Further Reading 161

Erscheint lt. Verlag 28.5.2013
Reihe/Serie Wiley Series in Probability and Statistics
Wiley Series in Probability and Statistics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Data Mining • Data Mining Statistics • Multivariate Analyse • multivariate analysis • Spezialthemen Statistik • Statistics • Statistics Special Topics • Statistik
ISBN-10 1-118-57366-8 / 1118573668
ISBN-13 978-1-118-57366-2 / 9781118573662
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 2,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich