Adaptive Sampling Designs (eBook)

Inference for Sparse and Clustered Populations
eBook Download: PDF
2012 | 2013
IX, 70 Seiten
Springer Berlin (Verlag)
978-3-642-33657-7 (ISBN)

Lese- und Medienproben

Adaptive Sampling Designs - George A.F. Seber, Mohammad M. Salehi
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book aims to provide an overview of some adaptive techniques used in estimating parameters for finite populations where the sampling at any stage depends on the sampling information obtained to date. The sample adapts to new information as it comes in. These methods are especially used for sparse and clustered populations.
Written by two acknowledged experts in the field of adaptive sampling.



George Seber is an Emeritus Professor of Statistics at Auckland University, New Zealand. He is an elected Fellow of the Royal Society of New Zealand and  recipient of their Hector medal in Science. He has authored or coauthored 13 books and 77 research articles on a wide variety of topics including linear and nonlinear models, multivariate analysis, adaptive sampling, genetics, epidemiology, and statistical ecology.

Mohammad Salehi is a Professor of Statistics at Isfahan University of Technology, Iran. Currently, he is also a Professor of Statistics and Director of the Statistical Consulting Unit at Qatar University, Qatar, and has published extensively in the field of adaptive sampling.

George Seber is an Emeritus Professor of Statistics at Auckland University, New Zealand. He is an elected Fellow of the Royal Society of New Zealand and  recipient of their Hector medal in Science. He has authored or coauthored 13 books and 77 research articles on a wide variety of topics including linear and nonlinear models, multivariate analysis, adaptive sampling, genetics, epidemiology, and statistical ecology.Mohammad Salehi is a Professor of Statistics at Isfahan University of Technology, Iran. Currently, he is also a Professor of Statistics and Director of the Statistical Consulting Unit at Qatar University, Qatar, and has published extensively in the field of adaptive sampling.

​Basic Ideas.- Adaptive Cluster Sampling.- Rao-Blackwell Modi.- Primary and Secondary Units.- Inverse Sampling Methods.- Adaptive Allocation.

Erscheint lt. Verlag 22.10.2012
Reihe/Serie SpringerBriefs in Statistics
SpringerBriefs in Statistics
Zusatzinfo IX, 70 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Adaptive allocation • Adaptive sampling • Inverse sampling • Sampling rare • Sparse and clustered populations • Stratified adaptive sampling • Two-stage sampling
ISBN-10 3-642-33657-4 / 3642336574
ISBN-13 978-3-642-33657-7 / 9783642336577
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 806 KB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich