Approximation Theory - George A. Anastassiou, Sorin G. Gal

Approximation Theory

Moduli of Continuity and Global Smoothness Preservation
Buch | Softcover
525 Seiten
2012 | Softcover reprint of the original 1st ed. 2000
Springer-Verlag New York Inc.
978-1-4612-7112-3 (ISBN)
106,99 inkl. MwSt
We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val­ ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop­ erty (GSPP) for almost all known linear approximation operators of ap­ proximation theory including: trigonometric operators and algebraic in­ terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera­ tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat­ ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth­ ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP.

1 Introduction.- 1.1 On Chapter 2: Uniform Moduli of Smoothness.- 1.2 On Chapter 3: LP-Moduli of Smoothness, 1 ?pTrigonometric Operators.- 6 Global Smoothness Preservation by Algebraic Interpolation Operators.- 7 Global Smoothness Preservation by General Operators.- 8 Global Smoothness Preservation by Multivariate Operators.- 9 Stochastic Global Smoothness Preservation.- 10 Shift Invariant Univariate Integral Operators.- 11 Shift Invariant Multivariate Integral Operators.- 12 Differentiated Shift Invariant Univariate Integral Operators.- 13 Differentiated Shift Invariant Multivariate Integral Operators.- 14 Generalized Shift Invariant Univariate Integral Operators.- 15 Generalized Shift Invariant Multivariate Integral Operators.- 16 General Theory of Global Smoothness Preservation by Univariate Singular Operators.- 17 General Theory of Global Smoothness Preservation by Multivariate Singular Operators.- 18 Gonska Progress in Global Smoothness Preservation.- 19 Miscellaneous Progress in Global Smoothness Preservation.- 20 Other Applications of the Global Smoothness Preservation Property.- References.- List of Symbols.

Zusatzinfo XIII, 525 p.
Verlagsort New York
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Schlagworte Analysis
ISBN-10 1-4612-7112-6 / 1461271126
ISBN-13 978-1-4612-7112-3 / 9781461271123
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

Buch | Hardcover (2023)
Carl Hanser (Verlag)
16,99