Several Complex Variables II -

Several Complex Variables II

Function Theory in Classical Domains Complex Potential Theory

G.M. Khenkin, A.G. Vitushkin (Herausgeber)

Buch | Softcover
VII, 262 Seiten
2012 | 1. Softcover reprint of the original 1st ed. 1994
Springer Berlin (Verlag)
978-3-642-63391-1 (ISBN)
53,49 inkl. MwSt
Plurisubharmonic functions playa major role in the theory of functions of several complex variables. The extensiveness of plurisubharmonic functions, the simplicity of their definition together with the richness of their properties and. most importantly, their close connection with holomorphic functions have assured plurisubharmonic functions a lasting place in multidimensional complex analysis. (Pluri)subharmonic functions first made their appearance in the works of Hartogs at the beginning of the century. They figure in an essential way, for example, in the proof of the famous theorem of Hartogs (1906) on joint holomorphicity. Defined at first on the complex plane IC, the class of subharmonic functions became thereafter one of the most fundamental tools in the investigation of analytic functions of one or several variables. The theory of subharmonic functions was developed and generalized in various directions: subharmonic functions in Euclidean space IRn, plurisubharmonic functionsin complex space en and others. Subharmonic functions and the foundations ofthe associated classical poten tial theory are sufficiently well exposed in the literature, and so we introduce here only a few fundamental results which we require. More detailed expositions can be found in the monographs of Privalov (1937), Brelot (1961), and Landkof (1966). See also Brelot (1972), where a history of the development of the theory of subharmonic functions is given.

I. Multidimensional Residues and Applications.- II. Plurisubharmonic Functions.- III. Function Theory in the Ball.- IV. Complex Analysis in the Future Tube.- Author Index.

Erscheint lt. Verlag 14.10.2012
Reihe/Serie Encyclopaedia of Mathematical Sciences
Co-Autor L.A. Aizenberg, A.B. Aleksandrov, A. Sadullaev, A.G. Sergeev, A.K. Tsikh, V.S. Vladimirov, A.P. Yuzhakov
Übersetzer P.M. Gauthier, J.R. King
Zusatzinfo VII, 262 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 416 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Complex Analysis • Dimension • Grad • Hardy-Räume • Leraysche Theorie • Mathematical Physics • Monge-Ampere-Operator • Nevanlinna theory • Plurisubharmonische Funktionen • Potential • Potential Theory • Residuen • Satz von Noether-Lasker • Twistortransformation • Zukunftstubus
ISBN-10 3-642-63391-9 / 3642633919
ISBN-13 978-3-642-63391-1 / 9783642633911
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
109,95