Recommender Systems and the Social Web

Leveraging Tagging Data for Recommender Systems

(Autor)

Buch | Softcover
XI, 112 Seiten
2013 | 2013
Springer Fachmedien Wiesbaden GmbH (Verlag)
978-3-658-01947-1 (ISBN)

Lese- und Medienproben

Recommender Systems and the Social Web - Fatih Gedikli
53,49 inkl. MwSt
There is an increasing demand for recommender systems due to the information overload users are facing on the Web. The goal of a recommender system is to provide personalized recommendations of products or services to users. With the advent of the Social Web, user-generated content has enriched the social dimension of the Web. As user-provided content data also tells us something about the user, one can learn the user's individual preferences from the Social Web. This opens up completely new opportunities and challenges for recommender systems research. Fatih Gedikli deals with the question of how user-provided tagging data can be used to build better recommender systems. A tag recommender algorithm is proposed which recommends tags for users to annotate their favorite online resources. The author also proposes algorithms which exploit the user-provided tagging data and produce more accurate recommendations. On the basis of this idea, he shows how tags can be used to explain to the user the automatically generated recommendations in a clear and intuitively understandable form. With his book, Fatih Gedikli gives us an outlook on the next generation of recommendation systems in the Social Web sphere.

Dr. Fatih Gedikli is a research assistant in computer science at TU Dortmund, Germany.

Recommender Systems.- Social Tagging.- Algorithms.- Explanations.

From the reviews:

"This book presents the results of research conducted in the course of a doctoral study on improving recommendations on the web. ... I recommend this book to graduate students and researchers in the field of recommender systems and the social web. It can also serve as inspiration on how to conduct user studies for evaluating various information processing approaches." (M. Bielikova, Computing Reviews, December, 2013)

Erscheint lt. Verlag 10.4.2013
Zusatzinfo XI, 112 p. 29 illus., 14 illus. in color.
Verlagsort Wiesbaden
Sprache englisch
Maße 148 x 210 mm
Gewicht 174 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Schlagworte Empfehlungsdienst • Empfehlungsdienst / Recommender System • Social Web
ISBN-10 3-658-01947-6 / 3658019476
ISBN-13 978-3-658-01947-1 / 9783658019471
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90