Neural-Based Orthogonal Data Fitting (eBook)

The EXIN Neural Networks
eBook Download: EPUB
2011 | 1. Auflage
276 Seiten
John Wiley & Sons (Verlag)
978-1-118-09774-8 (ISBN)

Lese- und Medienproben

Neural-Based Orthogonal Data Fitting - Giansalvo Cirrincione, Maurizio Cirrincione
Systemvoraussetzungen
87,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The presentation of a novel theory in orthogonal regression

The literature about neural-based algorithms is often dedicated to principal component analysis (PCA) and considers minor component analysis (MCA) a mere consequence. Breaking the mold, Neural-Based Orthogonal Data Fitting is the first book to start with the MCA problem and arrive at important conclusions about the PCA problem.

The book proposes several neural networks, all endowed with a complete theory that not only explains their behavior, but also compares them with the existing neural and traditional algorithms. EXIN neurons, which are of the authors' invention, are introduced, explained, and analyzed. Further, it studies the algorithms as a differential geometry problem, a dynamic problem, a stochastic problem, and a numerical problem. It demonstrates the novel aspects of its main theory, including its applications in computer vision and linear system identification. The book shows both the derivation of the TLS EXIN from the MCA EXIN and the original derivation, as well as:

* Shows TLS problems and gives a sketch of their history and applications

* Presents MCA EXIN and compares it with the other existing approaches

* Introduces the TLS EXIN neuron and the SCG and BFGS acceleration techniques and compares them with TLS GAO

* Outlines the GeTLS EXIN theory for generalizing and unifying the regression problems

* Establishes the GeMCA theory, starting with the identification of GeTLS EXIN as a generalization eigenvalue problem

In dealing with mathematical and numerical aspects of EXIN neurons, the book is mainly theoretical. All the algorithms, however, have been used in analyzing real-time problems and show accurate solutions. Neural-Based Orthogonal Data Fitting is useful for statisticians, applied mathematics experts, and engineers.

GIANSALVO CIRRINCIONE, PHD, is an assistant professor at the University of Picardie-Jules Verne, Amiens, France. His current research interests are neural networks, data analysis, computer vision, intelligent control, applied mathematics, brain models, and system identification. E-mail address: exin@u-picardie.fr MAURIZIO CIRRINCIONE, PHD, is a full professor of control and signal processing at the University of Technology of Belfort-Montbéliard, France. His current research interests are neural networks, modeling and control, system identification, data analysis, intelligent control, and electrical machines and drives. E-mail address: maurizio.cirrincione@utbm.fr

Foreword.

Preface.

1 The Total Least Squares Problems.

1.1 Introduction.

1.2 Some TLS Applications.

1.3 Preliminaries.

1.4 Ordinary Least Squares Problems.

1.5 Basic TLS Problem.

1.6 Multidimensional TLS Problem.

1.7 Nongeneric Unidimensional TLS Problem.

1.8 Mixed OLS-TLS Problem.

1.9 Algebraic Comparisons Between TLS and OLS.

1.10 Statistical Properties and Validity.

1.11 Basic Data Least Squares Problem.

1.12 The Partial TLS Algorithm.

1.13 Iterative Computation Methods.

1.14 Rayleigh Quotient Minimization Non Neural and Neural
Methods.

2 The MCA EXIN Neuron.

2.1 The Rayleigh Quotient.

2.2 The Minor Component Analysis.

2.3 The MCA EXIN Linear Neuron.

2.4 The Rayleigh Quotient Gradient Flows.

2.5 The MCA EXIN ODE Stability Analysis.

2.6 Dynamics of the MCA Neurons.

2.7 Fluctuations (Dynamic Stability) and Learning Rate.

2.8 Numerical Considerations.

2.9 TLS Hyperplane Fitting.

2.10 Simulations for the MCA EXIN Neuron.

2.11 Conclusions.

3 Variants of the MCA EXIN Neuron.

3.1 High-Order MCA Neurons.

3.2 The Robust MCA EXIN Nonlinear Neuron (NMCA EXIN).

3.3 Extensions of the Neural MCA.

4 Introduction to the TLS EXIN Neuron.

4.1 From MCA EXIN to TLS EXIN.

4.2 Deterministic Proof and Batch Mode.

4.3 Acceleration Techniques.

4.4 Comparison with TLS GAO.

4.5 A TLS Application: Adaptive IIR Filtering.

4.6 Numerical Considerations.

4.7 The TLS Cost Landscape: Geometric Approach.

4.8 First Considerations on the TLS Stability Analysis.

5 Generalization of Linear Regression Problems.

5.1 Introduction.

5.2 The Generalized Total Least Squares (GeTLS EXIN)
Approach.

5.3 The GeTLS Stability Analysis.

5.4 Neural Nongeneric Unidimensional TLS.

5.5 Scheduling.

5.6 The Accelerated MCA EXIN Neuron (MCA EXIN+).

5.7 Further Considerations.

5.8 Simulations for the GeTLS EXIN Neuron.

6 The GeMCA EXIN Theory.

6.1 The GeMCA Approach.

6.2 Analysis of Matrix K.

6.3 Analysis of the Derivative of the Eigensystem of GeTLS
EXIN.

6.4 Rank One Analysis Around the TLS Solution.

6.5 The GeMCA Spectra.

6.6 Qualitative Analysis of the Critical Points of the GeMCA
EXIN Error Function.

6.7 Conclusion.

References.

Index.

"Written by two leaders in the field of neural-based algorithms, this book proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms." (Zentralblatt MATH 2016)

Erscheint lt. Verlag 6.4.2011
Reihe/Serie Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control
Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Technik Elektrotechnik / Energietechnik
Schlagworte Applied Mathematics in Science • Data Mining • Data Mining Statistics • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Mathematics • Mathematik • Mathematik in den Naturwissenschaften • Signal Processing • Signalverarbeitung • Statistics • Statistik
ISBN-10 1-118-09774-2 / 1118097742
ISBN-13 978-1-118-09774-8 / 9781118097748
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 14,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich