Algebraic Geometry -  Daniel Perrin

Algebraic Geometry (eBook)

An Introduction
eBook Download: PDF
2007 | 1. Auflage
263 Seiten
Springer London (Verlag)
978-1-84800-056-8 (ISBN)
Systemvoraussetzungen
51,16 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Aimed primarily at graduate students and beginning researchers, this book provides an introduction to algebraic geometry that is particularly suitable for those with no previous contact with the subject; it assumes only the standard background of undergraduate algebra. The book starts with easily-formulated problems with non-trivial solutions and uses these problems to introduce the fundamental tools of modern algebraic geometry: dimension; singularities; sheaves; varieties; and cohomology. A range of exercises is provided for each topic discussed, and a selection of problems and exam papers are collected in an appendix to provide material for further study.
This book is built upon a basic second-year masters course given in 1991- 1992, 1992-1993 and 1993-1994 at the Universit' e Paris-Sud (Orsay). The course consisted of about 50 hours of classroom time, of which three-quarters were lectures and one-quarter examples classes. It was aimed at students who had no previous experience with algebraic geometry. Of course, in the time available, it was impossible to cover more than a small part of this ?eld. I chose to focus on projective algebraic geometry over an algebraically closed base ?eld, using algebraic methods only. The basic principles of this course were as follows: 1) Start with easily formulated problems with non-trivial solutions (such as B' ezout's theorem on intersections of plane curves and the problem of rationalcurves).In1993-1994,thechapteronrationalcurveswasreplaced by the chapter on space curves. 2) Use these problems to introduce the fundamental tools of algebraic ge- etry: dimension, singularities, sheaves, varieties and cohomology. I chose not to explain the scheme-theoretic method other than for ?nite schemes (which are needed to be able to talk about intersection multiplicities). A short summary is given in an appendix, in which special importance is given to the presence of nilpotent elements. 3) Use as little commutative algebra as possible by quoting without proof (or proving only in special cases) a certain number of theorems whose proof is not necessary in practise. The main theorems used are collected in a summary of results from algebra with references. Some of them are suggested as exercises or problems.
Erscheint lt. Verlag 25.1.2008
Übersetzer Catriona Maclean
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
ISBN-10 1-84800-056-1 / 1848000561
ISBN-13 978-1-84800-056-8 / 9781848000568
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich