Introduction to Diophantine Equations -  Titu Andreescu,  Dorin Andrica,  Ion Cucurezeanu

Introduction to Diophantine Equations (eBook)

A Problem-Based Approach
eBook Download: PDF
2010 | 1. Auflage
350 Seiten
Birkhauser Boston (Verlag)
978-0-8176-4549-6 (ISBN)
Systemvoraussetzungen
48,10 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants - including Olympiad and Putnam competitors - as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants - including Olympiad and Putnam competitors - as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.

Preface 6
Contents 10
Part I Diophantine Equations 14
I.1 Elementary Methods for Solving Diophantine Equations 15
1.1 The Factoring Method 15
1.2 Solving Diophantine Equations Using Inequalities 25
1.3 The Parametric Method 32
1.4 The Modular Arithmetic Method 41
1.5 The Method of Mathematical Induction 48
1.6 Fermat’s Method of Infinite Descent (FMID) 59
1.7 Miscellaneous Diophantine Equations 70
I.2 Some Classical Diophantine Equations 78
2.1 Linear Diophantine Equations 78
2.2 Pythagorean Triples and Related Problems 87
2.3 Other Remarkable Equations 99
2.3.1. Some Quadratic Diophantine Equations and Related Problems 99
2.3.2. Some Higher-Degree Diophantine Equations 111
I.3 Pell-Type Equations 128
3.1 Pell’s Equation: History and Motivation 129
3.2 Solving Pell’s Equation 132
3.3 The Equation ax2 by2 = 1 146
3.4 The Negative Pell’s Equation 151
I.4 Some Advanced Methods for Solving Diophantine Equations 157
4.1 The Ring Z[i] of Gaussian Integers 161
4.2 The Ring of Integers of Q[vd] 172
4.3 Quadratic Reciprocity and Diophantine Equations 188
4.4 Divisors of Certain Forms 191
4.4.1 Divisors of a2 +b2 192
4.4.2 Divisors of a2 +2b2 196
4.4.3 Divisors of a2 2b2 198
Part II Solutions to Exercises and Problems 201
II.1 Solutions to Elementary Methods for Solving Diophantine Equations 202
1.1 The Factoring Method 202
1.2 Solving Diophantine Equations Using Inequalities 211
1.3 The Parametric Method 222
1.4 The Modular Arithmetic Method 228
1.5 The Method of Mathematical Induction 238
1.6 Fermat’s Method of Infinite Descent (FMID) 248
1.7 Miscellaneous Diophantine Equations 262
II.2 Solutions to Some Classical Diophantine Equations 273
2.1 Linear Diophantine Equations 273
2.2 Pythagorean Triples and Related Problems 281
2.3 Other Remarkable Equations 286
II.3 Solutions to Pell-Type Equations 296
3.1 Solving Pell’s Equation by Elementary Methods 296
3.2 The Equation ax2 by2 = 1 305
II.4 Solutions to Some Advanced Methods in Solving Diophantine Equations 315
4.1 The Ring Z[i] of Gaussian Integers 315
4.2 The Ring of Integers of Q[vd] 320
4.3 Quadratic Reciprocity and Diophantine Equations 328
4.4 Divisors of Certain Forms 330
References 333
Glossary 337
Index 346

Erscheint lt. Verlag 14.9.2010
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Statistik
Technik
ISBN-10 0-8176-4549-7 / 0817645497
ISBN-13 978-0-8176-4549-6 / 9780817645496
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich