All of Nonparametric Statistics (eBook)

(Autor)

eBook Download: PDF
2006 | 2006
XII, 270 Seiten
Springer New York (Verlag)
978-0-387-30623-0 (ISBN)

Lese- und Medienproben

All of Nonparametric Statistics - Larry Wasserman
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book's dual approach includes a mixture of methodology and theory.


There are many books on various aspects of nonparametric inference such as density estimation, nonparametric regression, bootstrapping, and wavelets methods. But it is hard to ?nd all these topics covered in one place. The goal of this text is to provide readers with a single book where they can ?nd a brief account of many of the modern topics in nonparametric inference. The book is aimed at master's-level or Ph. D. -level statistics and computer science students. It is also suitable for researchersin statistics, machine lea- ing and data mining who want to get up to speed quickly on modern n- parametric methods. My goal is to quickly acquaint the reader with the basic concepts in many areas rather than tackling any one topic in great detail. In the interest of covering a wide range of topics, while keeping the book short, I have opted to omit most proofs. Bibliographic remarks point the reader to references that contain further details. Of course, I have had to choose topics to include andto omit,the title notwithstanding. For the mostpart,I decided to omit topics that are too big to cover in one chapter. For example, I do not cover classi?cation or nonparametric Bayesian inference. The book developed from my lecture notes for a half-semester (20 hours) course populated mainly by master's-level students. For Ph. D.

Preface 7
Contents 9
Introduction 13
1.1 What Is Nonparametric Inference? 13
1.2 Notation and Background 14
1.3 Confidence Sets 17
1.4 Useful Inequalities 20
1.5 Bibliographic Remarks 22
1.6 Exercises 22
Estimating the cdf and Statistical Functionals 24
2.1 The cdf 24
2.2 Estimating Statistical Functionals 26
2.3 Influence Functions 29
2.4 Empirical Probability Distributions 32
2.5 Bibliographic Remarks 34
2.6 Appendix 34
2.7 Exercises 35
The Bootstrap and the Jackknife 37
3.1 The Jackknife 37
3.2 The Bootstrap 40
3.3 Parametric Bootstrap 41
3.4 Bootstrap Confidence Intervals 42
3.5 Some Theory 45
3.6 Bibliographic Remarks 47
3.7 Appendix 47
3.8 Exercises 49
Smoothing: General Concepts 52
4.1 The Bias–Variance Tradeoff 59
4.2 Kernels 64
4.3 Which Loss Function? 66
4.4 Confidence Sets 66
4.5 The Curse of Dimensionality 67
4.6 Bibliographic Remarks 68
4.7 Exercises 68
Nonparametric Regression 70
5.1 Review of Linear and Logistic Regression 72
5.2 Linear Smoothers 75
5.3 Choosing the Smoothing Parameter 77
5.4 Local Regression 80
5.5 Penalized Regression, Regularization and Splines 90
5.6 Variance Estimation 94
5.7 Confidence Bands 98
5.8 Average Coverage 103
5.9 Summary of Linear Smoothing 104
5.10 Local Likelihood and Exponential Families 105
5.11 Scale-Space Smoothing 108
5.12 Multiple Regression 109
5.13 Other Issues 120
5.14 Bibliographic Remarks 128
5.15 Appendix 128
5.16 Exercises 129
Density Estimation 133
6.1 Cross-Validation 134
6.2 Histograms 135
6.3 Kernel Density Estimation 139
6.4 Local Polynomials 145
6.5 Multivariate Problems 146
6.6 Converting Density Estimation Into Regression 147
6.7 Bibliographic Remarks 148
6.8 Appendix 148
6.9 Exercises 150
Normal Means and Minimax Theory 153
7.1 The Normal Means Model 153
7.2 Function Spaces 155
7.3 Connection to Regression and Density Estimation 157
7.4 Stein’s Unbiased Risk Estimator (sure) 158
7.5 Minimax Risk and Pinsker’s Theorem 161
7.6 Linear Shrinkage and the James–Stein Estimator 163
7.7 Adaptive Estimation Over Sobolev Spaces 166
7.8 Confidence Sets 167
7.9 Optimality of Confidence Sets 174
7.10 Random Radius Bands? 178
7.11 Penalization, Oracles and Sparsity 179
7.12 Bibliographic Remarks 180
7.13 Appendix 181
7.14 Exercises 188
Nonparametric Inference Using Orthogonal Functions 191
8.1 Introduction 191
8.2 Nonparametric Regression 191
8.3 Irregular Designs 198
8.4 Density Estimation 200
8.5 Comparison of Methods 201
8.6 Tensor Product Models 201
8.7 Bibliographic Remarks 202
8.8 Exercises 202
Wavelets and Other Adaptive Methods 204
9.1 Haar Wavelets 206
9.2 Constructing Wavelets 210
9.3 Wavelet Regression 213
9.4 Wavelet Thresholding 215
9.5 Besov Spaces 218
9.6 Confidence Sets 221
9.7 Boundary Corrections and Unequally Spaced Data 222
9.8 Overcomplete Dictionaries 222
9.9 Other Adaptive Methods 223
9.10 Do Adaptive Methods Work? 227
9.11 Bibliographic Remarks 228
9.12 Appendix 228
9.13 Exercises 230
Other Topics 233
10.1 Measurement Error 233
10.2 Inverse Problems 239
10.3 Nonparametric Bayes 241
10.4 Semiparametric Inference 241
10.5 Correlated Errors 242
10.6 Classification 242
10.7 Sieves 243
10.8 Shape-Restricted Inference 243
10.9 Testing 244
10.10 Computational Issues 246
10.11 Exercises 246
Bibliography 249
Index 266

Erscheint lt. Verlag 10.9.2006
Reihe/Serie Springer Texts in Statistics
Springer Texts in Statistics
Zusatzinfo XII, 270 p.
Verlagsort New York
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Excel • parametric statistics • Statistica • Statistics • WholePage
ISBN-10 0-387-30623-4 / 0387306234
ISBN-13 978-0-387-30623-0 / 9780387306230
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43