Dynamic Linear Models with R (eBook)
XIII, 252 Seiten
Springer New York (Verlag)
978-0-387-77238-7 (ISBN)
State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms.
The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online.
No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.
State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.
Preface 6
Contents 9
1 Introduction: basic notions about Bayesian inference 12
1.1 Basic notions 13
1.2 Simple dependence structures 16
1.3 Synthesis of conditional distributions 22
1.4 Choice of the prior distribution 25
1.5 Bayesian inference in the linear regression model 29
1.6 Markov chain Monte Carlo methods 33
Problems 40
2 Dynamic linear models 41
2.1 Introduction 41
2.2 A simple example 45
2.3 State space models 49
2.4 Dynamic linear models. 51
2.5 Dynamic linear models in package dlm 53
2.6 Examples of nonlinear and non-Gaussian state space models 58
2.7 State estimation and forecasting 59
2.8 Forecasting 76
2.9 The innovation process and model checking 83
2.10 Controllability and observability of time-invariant DLMs 87
2.11 Filter stability 90
Problems 93
3 Model specification 95
3.1 Classical tools for time series analysis 95
3.2 Univariate DLMs for time series analysis 98
3.3 Models for multivariate time series 135
Problems 152
4 Models with unknown parameters 153
4.1 Maximum likelihood estimation 154
4.2 Bayesian inference 158
4.3 Conjugate Bayesian inference 159
4.4 Simulation-based Bayesian inference 170
4.5 Unknown variances 177
4.6 Further examples 196
Problems 216
5 Sequential Monte Carlo methods 217
5.1 The basic particle filter 218
5.2 Auxiliary particle filter 226
5.3 Sequential Monte Carlo with unknown parameters 229
5.4 Concluding remarks 238
A Useful distributions 240
B Matrix algebra: Singular Value Decomposition 246
Index 249
References 252
Erscheint lt. Verlag | 12.6.2009 |
---|---|
Reihe/Serie | Use R! | Use R! |
Zusatzinfo | XIII, 252 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Computerprogramme / Computeralgebra |
Mathematik / Informatik ► Mathematik ► Statistik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Bayesian inference • Bayesian Statistics • Dynamic Models • state space models • Time Series • Time Series Analysis |
ISBN-10 | 0-387-77238-3 / 0387772383 |
ISBN-13 | 978-0-387-77238-7 / 9780387772387 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich