Generalized Etale Cohomology Theories - John F. Jardine

Generalized Etale Cohomology Theories

(Autor)

Buch | Softcover
X, 317 Seiten
2010 | 1. Reprint of the 1997 Edition
Springer Basel (Verlag)
978-3-0348-0065-5 (ISBN)
80,24 inkl. MwSt
This book offers new, complete proofs of both Thomason's descent theorem for Bott periodic K-theory and the Nisnevich descent theorem, exposing major ideas of the homotopy theory of presheaves of spectra, and generalized etale homology theories in particular.

A generalized etale cohomology theory is a theory which is represented by a presheaf of spectra on an etale site for an algebraic variety, in analogy with the way an ordinary spectrum represents a cohomology theory for spaces. Examples include etale cohomology and etale K-theory. This book gives new and complete proofs of both Thomason's descent theorem for Bott periodic K-theory and the Nisnevich descent theorem. In doing so, it exposes most of the major ideas of the homotopy theory of presheaves of spectra, and generalized etale homology theories in particular. The treatment includes, for the purpose of adequately dealing with cup product structures, a development of stable homotopy theory for n-fold spectra, which is then promoted to the level of presheaves of n-fold spectra.

This book should be of interest to all researchers working in fields related to algebraic K-theory. The techniques presented here are essentially combinatorial, and hence algebraic. An extensive background in traditional stable homotopy theory is not assumed.

------ Reviews

(...) in developing the techniques of the subject, introduces the reader to the stable homotopy category of simplicial presheaves. (...) This book provides the user with the first complete account which is sensitive enough to be compatible with the sort of closed model category necessary in K-theory applications (...). As an application of the techniques the author gives proofs of the descent theorems of R. W. Thomason and Y. A. Nisnevich. (...) The book concludes with a discussion of the Lichtenbaum-Quillen conjecture (an approximation to Thomason's theorem without Bott periodicity). The recent proof of this conjecture, by V. Voevodsky, (...) makes this volume compulsory reading for all who want to be aufait with current trends in algebraic K-theory!

- Zentralblatt MATH

The presentation of these topics is highly original. The book will be very useful for any researcher interested in subjects related to algebraic K-theory.

- Matematica

John F. Jardine is a Professor of mathematics at the University of Western Ontario, Canada.

Smash products of spectra.- Abstract homotopy theory of n-fold spectra.- First applications.- Auxilliary results.- K-theory presheaves.- Generalized étale cohomology.- Bott periodic K-theory.

Erscheint lt. Verlag 15.12.2010
Reihe/Serie Modern Birkhäuser Classics
Zusatzinfo X, 317 p.
Verlagsort Basel
Sprache englisch
Maße 155 x 235 mm
Gewicht 485 g
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Algebra • Algebraic K-Theory • cohomology • cohomoloy theory • homotopy theory • Kohomologie • K-theory • Proof • Theorem • Thomason
ISBN-10 3-0348-0065-7 / 3034800657
ISBN-13 978-3-0348-0065-5 / 9783034800655
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

Buch | Hardcover (2023)
Carl Hanser (Verlag)
16,99